Dare you to use substitution 2

Algebra Level 4

Given the following simultaneous equations

2 x + y = 28 \sqrt{2x} + y = 28

x 2 y 3 y 5 = 64 x^{2} - y^{3} - \sqrt{y}^{5} = 64

find the value of x + y x + y where x x and y y are positive integers.


The answer is 88.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 15, 2014

From the first equation 2 x + y = 28 \sqrt{2x}+y = 28 , we note that for 2 x \sqrt{2x} to be an integer, 2 x = 2 × 2 n 2 \sqrt{2x} = \sqrt{2\times 2n^2} ) and x = 2 n 2 x = 2n^2 , where n = 1 , 2 , 3... , 13 n = 1, 2, 3...,13 .

Substitute into the first equation:

4 n 2 + y = 28 y = 28 2 n \sqrt{4n^2} + y = 28\quad \Rightarrow y = 28 - 2n , this means that y y is even and y 26 y \le 26 .

From the second equation x 2 y 3 y 5 = 64 x^2 - y^3 - \sqrt{y}^5 = 64 , we note that y \sqrt{y} have to be an integer and since y y is even, y = 4 m 2 \sqrt{y} = \sqrt{4m^2} and y = 4 m 2 y = 4m^2 , where m = 1 , 2 , . . . m = 1, 2,... . Since y 26 y \le 26 , y = 4 y = 4 or 16 16 .

From the second equation, when y = 4 y = 4 ,

x 2 4 3 4 5 = 64 x^2 - 4^3 - \sqrt{4}^5 = 64

x 2 = 64 + 64 + 32 = 160 x = 4 10 \Rightarrow x^2 = 64 + 64 + 32 = 160 \quad \Rightarrow x = 4\sqrt{10} which is not an integer.

When y = 16 y = 16 ,

x 2 = 64 + 1 6 3 + 16 5 = 64 + 4096 + 1024 = 5184 \Rightarrow x^2 = 64 + 16^3 + \sqrt{16}^5 = 64 + 4096 + 1024 = 5184

x = 5184 = 72 \Rightarrow x = \sqrt{5184}=72

x + y = 72 + 16 = 88 \therefore x+y= 72+16= \boxed{88}

Sorry, the answer is x + y = 72 + 16 = 88 x + y = 72 + 16 = \boxed{88} .

Chew-Seong Cheong - 6 years, 9 months ago

Log in to reply

You may edit your future solutions by clicking on the pencil at the top right of your solution. I have already edited this one for you. Btw: Great Solution!

Trevor Arashiro - 6 years, 7 months ago
Ayush Verma
Oct 10, 2014

( i ) G i v e n x & y I + ( i i ) B y i n s p e c t i o n o f b o t h e q n , 2 x & y a r e w h o l e s q u a r e n u m b e r s ( i i i ) B y 2 n d e q n x 2 = 64 + y 3 + y 5 / 2 x 2 64 ( a s y i s + v e ) x 8 ( a s x i s + v e ) b y 1 s t e q n , y = 28 2 x y 24 ( a s x 8 ) s o p o s s i b l e v a l u e s o f y a r e 1 , 4 , 9 , & 16. U s e h i t & t r i a l o n l y o n e s o l n ( 72 , 16 ) x + y = 72 + 16 = 88 (i)Given\quad x\& y\in { I }^{ + }\\ \\ \\ (ii)By\quad inspection\quad of\quad both\quad { eq }^{ n },\\ \\ 2x\quad \& \quad y\quad are\quad whole\quad square\quad numbers\\ \\ \\ (iii)By\quad { 2 }^{ nd\quad }{ eq }^{ n }\quad \\ \\ { x }^{ 2 }=64+{ y }^{ 3 }+{ y }^{ 5/2 }\\ \\ \Rightarrow { x }^{ 2 }\ge 64\quad (as\quad y\quad is\quad +ve)\\ \\ \Rightarrow x\ge 8\quad (as\quad x\quad is\quad +ve)\\ \\ \\ by\quad { 1 }^{ st }\quad { eq }^{ n },\quad \\ \\ y=28-\sqrt { 2x } \\ \\ \Rightarrow y\le 24\quad (as\quad x\ge 8)\\ \\ so\quad possible\quad values\quad of\quad y\quad are\quad 1,4,9,\& 16.\\ \\ \\ Use\quad hit\quad \& \quad trial\Rightarrow only\quad one\quad { sol }^{ n }\quad (72,16)\\ \\ x+y=72+16=88\\

Nicely done Sir

U Z - 6 years, 7 months ago

Log in to reply

thanks for appreciation.

Ayush Verma - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...