Data insufficient

Algebra Level 4

Given that a 2 + b 2 + c 2 + d 2 a b b c c d d + 2 5 = 0 a^2+b^2+c^2+d^2-ab-bc-cd-d+\frac{2}{5}=0 , find the value of a + b + c + d a+b+c+d .


Source: Mathematical Circles.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Department 8
Oct 11, 2015

Well it took me a lot of time but I knew it is something related to square:-

a 2 + b 2 + c 2 + d 2 a b b c c d d + 2 5 = 0 a 2 + b 2 4 + 3 b 2 4 + ( 3 4 ) ( 4 c 2 9 ) + 2 c 2 3 + ( 9 d 2 16 ) ( 2 3 ) + 5 d 2 8 2 a b 2 ( 4 b c 3 ) ( 3 4 ) ( 2 c 3 ) ( 3 d 4 ) ( 2 ) ( 8 d 5 ) ( 5 8 ) + ( 16 25 ) ( 5 8 ) = 0 ( a 2 + b 2 4 2 a b 2 ) + ( 3 b 2 4 + ( 4 c 2 9 ) ( 3 4 ) ( 4 b c 3 ) ( 3 4 ) ) + ( 2 c 2 3 + ( 9 d 2 16 ) ( 2 3 ) ( 2 c 3 ) ( 3 d 4 ) ( 2 ) ) + ( 5 d 2 8 + ( 16 25 ) ( 5 8 ) ( 8 d 5 ) ( 5 5 ) ) = 0 ( a b 2 ) 2 + ( 3 4 ) ( b 2 c 3 ) 2 + ( 2 3 ) ( c 3 d 4 ) 2 + ( 5 8 ) ( d 4 5 ) 2 = 0 \large{{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+{ d }^{ 2 }-ab-bc-cd-d+\frac { 2 }{ 5 } =0\\ { a }^{ 2 }+\frac { { b }^{ 2 } }{ 4 } +\frac { 3{ b }^{ 2 } }{ 4 } +\left( \frac { 3 }{ 4 } \right) \left( \frac { { 4c }^{ 2 } }{ 9 } \right) +\frac { 2{ c }^{ 2 } }{ 3 } +\left( \frac { 9{ d }^{ 2 } }{ 16 } \right) \left( \frac { 2 }{ 3 } \right) +\frac { 5{ d }^{ 2 } }{ 8 } -\frac { 2ab }{ 2 } -\left( \frac { 4bc }{ 3 } \right) \left( \frac { 3 }{ 4 } \right) -\left( \frac { 2c }{ 3 } \right) \left( \frac { 3d }{ 4 } \right) \left( 2 \right) -\left( \frac { 8d }{ 5 } \right) \left( \frac { 5 }{ 8 } \right) +\left( \frac { 16 }{ 25 } \right) \left( \frac { 5 }{ 8 } \right) =0\\ \left( { a }^{ 2 }+\frac { { b }^{ 2 } }{ 4 } -\frac { 2ab }{ 2 } \right) +\left( \frac { 3{ b }^{ 2 } }{ 4 } +\left( \frac { 4{ c }^{ 2 } }{ 9 } \right) \left( \frac { 3 }{ 4 } \right) -\left( \frac { 4bc }{ 3 } \right) \left( \frac { 3 }{ 4 } \right) \right) +\left( \frac { 2{ c }^{ 2 } }{ 3 } +\left( \frac { 9{ d }^{ 2 } }{ 16 } \right) \left( \frac { 2 }{ 3 } \right) -\left( \frac { 2c }{ 3 } \right) \left( \frac { 3d }{ 4 } \right) \left( 2 \right) \right) +\left( \frac { 5{ d }^{ 2 } }{ 8 } +\left( \frac { 16 }{ 25 } \right) \left( \frac { 5 }{ 8 } \right) -\left( \frac { 8d }{ 5 } \right) \left( \frac { 5 }{ 5 } \right) \right) =0\\ { \left( a-\frac { b }{ 2 } \right) }^{ 2 }+\left( \frac { 3 }{ 4 } \right) { \left( b-\frac { 2c }{ 3 } \right) }^{ 2 }+\left( \frac { 2 }{ 3 } \right) { \left( c-\frac { 3d }{ 4 } \right) }^{ 2 }+\left( \frac { 5 }{ 8 } \right) { \left( d-\frac { 4 }{ 5 } \right) }^{ 2 }=0}

this gives:-

d = 4 5 , c = 3 5 , b = 2 5 , a = 1 5 \large{d=\frac { 4 }{ 5 } ,c=\frac { 3 }{ 5 } ,b=\frac { 2 }{ 5 } ,a=\frac { 1 }{ 5 } }

I did it the same way. Just complete the squares, a straightforward if a bit tedious task.

More generally, you can consider the analogous equations for n n variables when the constant term is n 2 n + 2 \frac{n}{2n+2} ... in our case we have n = 4 n=4 . These computations come up in graph theory.

Otto Bretscher - 5 years, 8 months ago

Well i yried bashing on it and it just got solved in a mere 2 min......not a good way to approach problems..uet fascinating enough.... :)

Mohit Gupta - 5 years, 8 months ago

Log in to reply

Explain bashing (I don't know what you mean)

Department 8 - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...