∫ − 1 1 x 2 sin ( x 2 − 1 ) + sin 2 ( x 2 − 1 ) 2 sin ( x 2 − 1 ) − sin 2 ( x 2 − 1 ) d x = ?
Note: An Indefinite Integral with the same integrand appeared in the JEE Mains 2019.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ − 1 1 x 2 sin ( x 2 − 1 ) + sin 2 ( x 2 − 1 ) 2 sin ( x 2 − 1 ) − sin 2 ( x 2 − 1 ) d x = 2 1 ∫ − 1 1 ( x 2 sin ( x 2 − 1 ) + sin 2 ( x 2 − 1 ) 2 sin ( x 2 − 1 ) − sin 2 ( x 2 − 1 ) + ( 0 − x ) 2 sin ( ( 0 − x ) 2 − 1 ) + sin 2 ( ( 0 − x ) 2 − 1 ) 2 sin ( ( 0 − x ) 2 − 1 ) − sin 2 ( ( 0 − x ) 2 − 1 ) ) d x = 2 1 ∫ − 1 1 ( x 2 sin ( x 2 − 1 ) + sin 2 ( x 2 − 1 ) 2 sin ( x 2 − 1 ) − sin 2 ( x 2 − 1 ) − x 2 sin ( x 2 − 1 ) + sin 2 ( x 2 − 1 ) 2 sin ( x 2 − 1 ) − sin 2 ( x 2 − 1 ) ) d x = 2 1 ∫ − 1 1 0 d x = 0 By ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
I'm sorry @Chew-Seong Cheong I'd posted the integrand with a negative sign in the denominator, it was supposed to be a positive. I've corrected it now.
Mr. @Chew-Seong Cheong Please revise your solution, the denominator of the expression inside the square root has a positive sign hanging in between the two sine functions. Cheers!
You can observe that the integrand is an odd function . You may straightaway make use of the fact: ∫ − a a f ( x ) d x = 0 when f ( x ) is an odd function, i.e. in mathematical terms f ( − x ) = − f ( x ) .
The longer approach would be to compute the indefinite integral and put in the upper and lower bounds. First, let u = x 2 − 1 ⟹ 2 1 d u = x d x . Use this information to transform the integral into 2 1 ∫ 2 sin u + sin 2 u 2 sin u − sin 2 u d u . Now make use of the following Trigonometric Identities: sin 2 x = 2 sin x cos x , sin 2 x = 2 1 − cos 2 x and cos 2 x = 2 1 + cos 2 x . Let I be the definite integral:
2 1 ∫ 1 + cos u 1 − cos u d u = 2 1 ∫ tan 2 u d u = lo g ∣ ∣ ∣ ∣ ∣ sec ( 2 x 2 − 1 ) ∣ ∣ ∣ ∣ ∣ + C ⟹ I = ∫ − 1 1 x 2 sin ( x 2 − 1 ) + sin 2 ( x 2 − 1 ) 2 sin ( x 2 − 1 ) − sin 2 ( x 2 − 1 ) d x = lo g ∣ ∣ ∣ ∣ ∣ sec ( 2 x 2 − 1 ) ∣ ∣ ∣ ∣ ∣ − 1 1 = 0
Instead of this long approach, you can see that the expression inside the radical is nothing but 1.........!!!!
No @Aaghaz Mahajan It isn't. I've corrected my solution. It was supposed to be a positive sign in the denominator. Cheers!
Log in to reply
Ohhh lol........That is why I was wondering, why that strange expression.......!!!
Since every x inside the square root is squared, replacing x for -x will only change the value of the first x before the square root symbol to -x. This means that the area under x=0 to x=1 will be same as the area under x=-1 to x=0, but the area from x=-1 to x=0 will be negative (underneath the x axis) and so will cancel out the area from x=0 to x=1, giving the integral (area above x axis - area under x axis) from x=-1 to x=1 to be 0.
Problem Loading...
Note Loading...
Set Loading...
We are given: ∫ − 1 1 x ( 2 sin ( x 2 − 1 ) + sin 2 ( x 2 − 1 ) ) ( 2 sin ( x 2 − 1 ) − sin 2 ( x 2 − 1 ) ) d x
*Substitute u = ( x 2 − 1 )
= ∫ − 1 1 x ( 2 sin ( u ) + sin 2 ( u ) ) ( 2 sin ( u ) − sin 2 ( u ) ) d x
**if u = ( x 2 − 1 ) , d u = 2 x d x so 2 d u = x d x
= ∫ − 1 1 2 1 ( 2 sin ( u ) + sin 2 ( u ) ) ( 2 sin ( u ) − sin 2 ( u ) ) d u
* When defining the bounds of the integral, in terms of u, one must plug the two already given bounds into what u was defined as. This would make the two bounds as 0.
= ∫ 0 0 2 1 ( 2 sin ( u ) + sin 2 ( u ) ) ( 2 sin ( u ) − sin 2 ( u ) ) d u
= 0