Daunting Definite Integral

Calculus Level 1

1 1 x 2 sin ( x 2 1 ) sin 2 ( x 2 1 ) 2 sin ( x 2 1 ) + sin 2 ( x 2 1 ) d x = ? \int_{-1}^{1}{x\sqrt{\dfrac{2\sin (x^{2}-1)-\sin 2(x^{2}-1)}{2\sin (x^{2}-1)+\sin 2(x^{2}-1)}}}dx = ?

Note: An Indefinite Integral with the same integrand appeared in the JEE Mains 2019.

1 1 e e 0 0 log ( 3 ) \log(3)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Eeshan Zele
Apr 20, 2019

We are given: 1 1 x ( 2 sin ( x 2 1 ) sin 2 ( x 2 1 ) ) ( 2 sin ( x 2 1 ) + sin 2 ( x 2 1 ) ) d x \int _{ -1 }^{ 1 }{ x\sqrt { \frac { (2\sin { ({ x }^{ 2 }-1) - \sin { 2({ x }^{ 2 }-1)) } } }{ (2\sin { ({ x }^{ 2 }-1) + \sin { 2({ x }^{ 2 }-1)) } } } } dx }

*Substitute u = ( x 2 1 ) ({ x }^{ 2 }-1)

= 1 1 x ( 2 sin ( u ) sin 2 ( u ) ) ( 2 sin ( u ) + sin 2 ( u ) ) d x \int _{ -1 }^{ 1 }{ x\sqrt { \frac { (2\sin { (u)-\sin { 2(u)) } } }{ (2\sin { (u)+ \sin { 2(u)) } } } } dx }

**if u = ( x 2 1 ) ({ x }^{ 2 }-1) , d u = 2 x d x du = 2xdx so d u 2 = x d x \frac { du }{ 2 } =xdx

= 1 1 1 2 ( 2 sin ( u ) sin 2 ( u ) ) ( 2 sin ( u ) + sin 2 ( u ) ) d u \int _{ -1 }^{ 1 }{ \frac { 1 }{ 2 } \sqrt { \frac { (2\sin { (u)-\sin { 2(u)) } } }{ (2\sin { (u)+\sin { 2(u)) } } } } du }

* When defining the bounds of the integral, in terms of u, one must plug the two already given bounds into what u was defined as. This would make the two bounds as 0.

= 0 0 1 2 ( 2 sin ( u ) sin 2 ( u ) ) ( 2 sin ( u ) + sin 2 ( u ) ) d u \int _{ 0 }^{ 0 }{ \frac { 1 }{ 2 } \sqrt { \frac { (2\sin { (u)-\sin { 2(u)) } } }{ (2\sin { (u)+\sin { 2(u)) } } } } du }

= 0 \boxed {0}

Chew-Seong Cheong
Jan 11, 2019

I = 1 1 x 2 sin ( x 2 1 ) sin 2 ( x 2 1 ) 2 sin ( x 2 1 ) + sin 2 ( x 2 1 ) d x By a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 1 1 ( x 2 sin ( x 2 1 ) sin 2 ( x 2 1 ) 2 sin ( x 2 1 ) + sin 2 ( x 2 1 ) + ( 0 x ) 2 sin ( ( 0 x ) 2 1 ) sin 2 ( ( 0 x ) 2 1 ) 2 sin ( ( 0 x ) 2 1 ) + sin 2 ( ( 0 x ) 2 1 ) ) d x = 1 2 1 1 ( x 2 sin ( x 2 1 ) sin 2 ( x 2 1 ) 2 sin ( x 2 1 ) + sin 2 ( x 2 1 ) x 2 sin ( x 2 1 ) sin 2 ( x 2 1 ) 2 sin ( x 2 1 ) + sin 2 ( x 2 1 ) ) d x = 1 2 1 1 0 d x = 0 \begin{aligned} I & = \int_{-1}^1 x \sqrt{\frac {2\sin(x^2-1)-\sin 2(x^2-1)}{2\sin(x^2-1)+\sin 2(x^2-1)}} dx & \small \color{#3D99F6} \text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_{-1}^1 \left( x \sqrt{\frac {2\sin(x^2-1)-\sin 2(x^2-1)}{2\sin(x^2-1)+\sin 2(x^2-1)}} + {\color{#3D99F6}(0-x)} \sqrt{\frac {2\sin({\color{#3D99F6}(0-x)} ^2-1)-\sin 2({\color{#3D99F6}(0-x)} ^2-1)}{2\sin({\color{#3D99F6}(0-x)} ^2-1)+\sin 2({\color{#3D99F6}(0-x)} ^2-1)}} \right) dx \\ & = \frac 12 \int_{-1}^1 \left( x \sqrt{\frac {2\sin(x^2-1)-\sin 2(x^2-1)}{2\sin(x^2-1)+\sin 2(x^2-1)}} - x \sqrt{\frac {2\sin(x^2-1)-\sin 2(x^2-1)}{2\sin(x^2-1)+\sin 2(x^2-1)}} \right) dx \\ & = \frac 12 \int_{-1}^1 0 \ dx = \boxed 0 \end{aligned}

I'm sorry @Chew-Seong Cheong I'd posted the integrand with a negative sign in the denominator, it was supposed to be a positive. I've corrected it now.

Paras Khosla - 2 years, 5 months ago

Mr. @Chew-Seong Cheong Please revise your solution, the denominator of the expression inside the square root has a positive sign hanging in between the two sine functions. Cheers!

Paras Khosla - 2 years, 5 months ago

Log in to reply

QED -- quite easily done!

Chew-Seong Cheong - 2 years, 5 months ago
Paras Khosla
Jan 11, 2019

You can observe that the integrand is an odd function . You may straightaway make use of the fact: a a f ( x ) d x = 0 \int_{-a}^{a}{f(x)dx}=0 when f ( x ) f(x) is an odd function, i.e. in mathematical terms f ( x ) = f ( x ) f(-x)=-f(x) .

The longer approach would be to compute the indefinite integral and put in the upper and lower bounds. First, let u = x 2 1 1 2 d u = x d x u=x^2-1\implies \frac{1}{2}du=xdx . Use this information to transform the integral into 1 2 2 sin u sin 2 u 2 sin u + sin 2 u d u \frac{1}{2}\int{\sqrt{\frac{2\sin u -\sin 2u}{2\sin u +\sin 2u}}du} . Now make use of the following Trigonometric Identities: sin 2 x = 2 sin x cos x \sin 2x=2\sin x \cos x , sin 2 x = 1 cos 2 x 2 \sin^2 x =\frac{1-\cos 2x}{2} and cos 2 x = 1 + cos 2 x 2 \cos^2 x=\frac{1+\cos 2x}{2} . Let I I be the definite integral:

1 2 1 cos u 1 + cos u d u = 1 2 tan u 2 d u = log sec ( x 2 1 2 ) + C I = 1 1 x 2 sin ( x 2 1 ) sin 2 ( x 2 1 ) 2 sin ( x 2 1 ) + sin 2 ( x 2 1 ) d x = log sec ( x 2 1 2 ) 1 1 = 0 \dfrac{1}{2}\displaystyle \int{\sqrt{\dfrac{1-\cos u}{1+\cos u}}du}=\dfrac{1}{2}\displaystyle \int{\tan \dfrac{u}{2}du}=\log \Biggl| \sec \biggl( \dfrac{x^2-1}{2}\biggr) \Biggr|+C \implies I=\displaystyle \int_{-1}^{1}{x\sqrt{\dfrac{2\sin (x^{2}-1)-\sin 2(x^{2}-1)}{2\sin (x^{2}-1)+\sin 2(x^{2}-1)}}}dx = \log \Biggl| \sec \biggl( \dfrac{x^2-1}{2}\biggr) \Biggr|_{-1}^{1} = 0

Instead of this long approach, you can see that the expression inside the radical is nothing but 1.........!!!!

Aaghaz Mahajan - 2 years, 5 months ago

No @Aaghaz Mahajan It isn't. I've corrected my solution. It was supposed to be a positive sign in the denominator. Cheers!

Paras Khosla - 2 years, 5 months ago

Log in to reply

Ohhh lol........That is why I was wondering, why that strange expression.......!!!

Aaghaz Mahajan - 2 years, 5 months ago
Adam Insall
Apr 11, 2019

Since every x inside the square root is squared, replacing x for -x will only change the value of the first x before the square root symbol to -x. This means that the area under x=0 to x=1 will be same as the area under x=-1 to x=0, but the area from x=-1 to x=0 will be negative (underneath the x axis) and so will cancel out the area from x=0 to x=1, giving the integral (area above x axis - area under x axis) from x=-1 to x=1 to be 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...