Day 2: Simultaneous Turtle Doves

Algebra Level 1

For the positive numbers d , o , v , e d, o, v, e : d 2 + d o = 250 o 2 + d o = 150 d^2 + do = 250 \\ o^2 + do = 150 v 2 + v e = 30 e 2 + v e = 34 v^2 + ve = 30 \\ e^2 + ve = 34 Find the value of d + o + v + e d + o + v + e .


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Michael Ng
Dec 1, 2014

When we add the first two equations together we get ( d + o ) 2 = 400 (d + o)^2 = 400 and since d d and o o are positive, d + o = 20 d + o = 20 . Similarly for the other two we get v + e = 8 v + e = 8 .

Therefore the answer is 20 + 8 = 28 20 + 8 =\boxed{28} .

We must verify that there are positive solutions; in order to do this simply divide the first two by d + o d+o to solve and similarly by v + e v+e for the other two. This shows that there are indeed positive solutions.

Same method but very nice problem, kinda confusing at first

Marc Vince Casimiro - 6 years, 6 months ago

As an aside, you should verify that there indeed does exist positive numbers which satisfy the original conditions.

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

(d, o, v, e) = (12.5, 7.5, 3.75, 4.25)

Ujjwal Rane - 6 years, 6 months ago

Yes, that is an important point. :) I'll put it into the solution.

Michael Ng - 6 years, 6 months ago

You kinda told me about this :p. Good problem!

Kunal Jadhav - 6 years, 6 months ago

What happened to the d o do or the v e ve ?

William Isoroku - 6 years, 6 months ago

haha, i'm bit confuse here

Eko Supadi - 6 years, 5 months ago

exactly the same!

Asim Das - 6 years, 5 months ago
Chew-Seong Cheong
Dec 21, 2014

Let me answer it systematically.

{ d 2 + d o = 250 . . . ( 1 ) o 2 + d o = 150 . . . ( 2 ) v 2 + d o = 30 . . . ( 3 ) e 2 + d o = 34 . . . ( 4 ) \begin {cases} d^2 + do = 250 &...(1) \\ o^2 + do = 150 &...(2) \\ v^2 + do = 30 &...(3) \\ e^2 + do = 34 &...(4) \end {cases}

Eqn 1 + Eqn 2 and Eqn 3 + Eqn 4:

{ d 2 + 2 d o + o 2 = 250 + 150 ( d + o ) 2 = 400 d + o = 20 v 2 + 2 v e + e 2 = 30 + 34 ( v + e ) 2 = 64 v + e = 8 \Rightarrow \begin {cases} d^2 + 2do + o^2 = 250 +150 & \Rightarrow (d+o)^2 = 400 & \Rightarrow d+o = 20 \\ v^2 + 2ve + e^2 = 30+34 & \Rightarrow (v+e)^2 = 64 & \Rightarrow v+e = 8 \end {cases}

Therefore, d + o + v + e = ( d + o ) + ( v + e ) = 20 + 8 = 28 d+o+v+e = (d+o)+(v+e) = 20+8 = \boxed{28}

Ashu Gupta
Dec 9, 2014

simply first add first 2 equation - we get- (d+o)^2=400. so d+o =20 and similarly v+e=8 so d+o+v+e=28

Swapnil Kusumwal
Jan 1, 2015

After adding the first two equations i.e. (d^2+do=250) ,(o^2+do=150), we get an equation (d^2+o^2+2do=400) which can also be written as {(d+o)^2=(20)^2}.

Therefore, (d+o=20).

Now adding the 3rd and 4th equation i.e. (v^2+ve=30),(e^2+ve=34) , we get an equation (v^2+e^2+2ve=64) which can also be written as {(v+e)^2=(8)^2}.

Therefore, (v+e=8).

Now adding the equations (d+o=20),(v+e=8) we get (d+o+v+e=28).

Rio Kurtinus
Dec 29, 2014

d^2 + 2do + o^2 = 400 (d+o)^2 = 400 d + o = 20 v^2 + 2ve + e^2 = 64 (v+e)^2 = 64 v + e = 8 d + o + v + e = 28

Anna Anant
Dec 16, 2014

d^2+2od+o^2=400 (d+o)^2=400 d+o=20 v2+2ve+e^2=64 (v+e)^2=64 v+e=8 d+o+e+v=20+8=28

Gopi Velayudhan
Dec 12, 2014

d(d+o)=250........d=250/d+o, o(d+o)=150........o=150/d+o. d+o=(250/d+o)+(105/d+o) =400/d+o, (d+o)^2=400, d+o=20 ...................v+e=8, d+o+v+e=28

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...