d d x \frac{d}{dx} and d 2 d x 2 \frac{d^2}{dx^2}

Calculus Level 2

If d d x f ( x ) = g ( x ) \displaystyle\frac{d}{dx} f(x) = g(x) and d d x g ( x ) = f ( x 2 ) \displaystyle\frac{d}{dx}g(x) = f(x^2) , then d 2 d x 2 f ( x 3 ) = ? \displaystyle\frac{d^2}{dx^2}f(x^3) =\ ?

( A ) f ( x 6 ) ( B ) g ( x 3 ) ( C ) 3 x 2 g ( x 3 ) ( D ) 9 x 4 f ( x 6 ) + 6 x g ( x 3 ) ( E ) f ( x 6 ) + g ( x 3 ) \begin{aligned} (A) &\quad f\left(x^6\right) & (B)&\quad g\left(x^3\right)\\ (C) &\quad 3x^2 g\left(x^3\right) & (D) &\quad 9x^4 f\left(x^6\right)+6x g\left(x^3\right)\\ (E) &\quad f\left(x^6\right) + g\left(x^3\right) & & \end{aligned}

Credit: 1969 AP Calculus AB Exam

A B C D E

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sean Roberson
Nov 14, 2014

Let D D be the differential operator. Then D 2 ( f ( x 3 ) ) = D ( 3 x 2 g ( x 3 ) ) = 9 x 4 f ( x 6 ) + 6 x g ( x 3 ) D^2(f(x^3)) = D(3x^2g(x^3))=9x^4f(x^6)+6xg(x^3) .

Would please explain me the second line?

Prokash Shakkhar - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...