Deadly Radicals!

Algebra Level 5

A = 1 + 9 1 2019 9 1 2019 + 3 + 1 + 9 2 2019 9 2 2019 + 3 + 1 + 9 3 2019 9 3 2019 + 3 + + 1 + 9 2018 2019 9 2018 2019 + 3 1 9 1 2019 9 1 2019 + 3 + 1 9 2 2019 9 2 2019 + 3 + 1 9 3 2019 9 3 2019 + 3 + + 1 9 2018 2019 9 2018 2019 + 3 A=\frac{\sqrt[]{1+\sqrt[]{\frac{9^{\frac{1}{2019}}}{9^{\frac{1}{2019}}+3}}} + \sqrt[]{1+\sqrt[]{\frac{9^{\frac{2}{2019}}}{9^{\frac{2}{2019}}+3}}} + \sqrt[]{1+\sqrt[]{\frac{9^{\frac{3}{2019}}}{9^{\frac{3}{2019}}+3}}} + \ldots + \sqrt[]{1+\sqrt[]{\frac{9^{\frac{2018}{2019}}}{9^{\frac{2018}{2019}}+3}}}~}{\sqrt[]{1-\sqrt[]{\frac{9^{\frac{1}{2019}}}{9^{\frac{1}{2019}}+3}}} + \sqrt[]{1-\sqrt[]{\frac{9^{\frac{2}{2019}}}{9^{\frac{2}{2019}}+3}}} + \sqrt[]{1-\sqrt[]{\frac{9^{\frac{3}{2019}}}{9^{\frac{3}{2019}}+3}}} + \ldots + \sqrt[]{1-\sqrt[]{\frac{9^{\frac{2018}{2019}}}{9^{\frac{2018}{2019}}+3}}}}

For A A as defined above, find A \lfloor A \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Saket Raj
Jan 22, 2020

L e t f ( x ) = 9 x 9 x + 3 , then Let~f \left( x \right) =\frac{9^{x}}{9^{x}+3}\text{, then}

f ( 1 x ) = 9 1 x 9 1 x + 3 = 9 9 x 9 9 x + 3 = 9 9 + 3 9 x = 9 3 ( 3 + 9 x ) = 3 9 x + 3 . f \left( 1-x \right) =\frac{9^{1-x}}{9^{1-x}+3}=\frac{\frac{9}{9^{x}}}{\frac{9}{9^{x}}+3}=\frac{9}{9+3 \cdot 9^{x}}=\frac{9}{3 \left( 3+9^{x} \right) }=\frac{3}{9^{x}+3}.

Observe that f ( x ) + f ( 1 x ) = 9 x 9 x + 3 + 3 9 x + 3 = 9 x + 3 9 x + 3 = 1. \text{Observe that f} \left( x \right) +f \left( 1-x \right) =\frac{9^{x}}{9^{x}+3}+\frac{3}{9^{x}+3}=\frac{9^{x}+3}{9^{x}+3}=1.

Now if we define f ( x ) = sin 2 α for some α ϵ R, then the value of \text{Now if we define f} \left( x \right) =\sin ^{2} \alpha ~\text{ for some α ϵ R, then the value of }

f ( 1 x ) = 1 f ( x ) = 1 sin 2 α = cos 2 α . f \left( 1-x \right) =1-f \left( x \right) =1-\sin ^{2} \alpha ~= \cos ^{2} \alpha .

For example let sin 2 α = f ( 1 2019 ) = 9 1 2019 9 1 2019 + 3 , then \text{For example let }\sin ^{2} \alpha =f \left( \frac{1}{2019} \right) = \frac{9^{\frac{1}{2019}}}{9^{\frac{1}{2019}}+3}\text{, then}

cos 2 α = f ( 1 1 2019 ) = f ( 2018 2019 ) = 9 2018 2019 9 2018 2019 + 3 . \cos ^{2} \alpha =f \left( 1-\frac{1}{2019} \right) =f \left( \frac{2018}{2019} \right) =\frac{9^{\frac{2018}{2019}}}{9^{\frac{2018}{2019}}+3}~.~

Now consider the expression 1 + s i n α + 1 + c o s α 1 s i n α + 1 c o s α = \text{Now consider the expression}~~\frac{\sqrt[]{1+sin \alpha }+\sqrt[]{1+cos \alpha }}{\sqrt[]{1-sin \alpha }+\sqrt[]{1-cos \alpha }}=

= ( 2 + 1 ) cos ( α 2 ) + s i n ( α 2 ) ( 2 1 ) sin ( α 2 ) + c o s ( α 2 ) × ( 2 + 1 ) ( 2 + 1 ) = ( 2 + 1 ) cos ( α 2 ) + s i n ( α 2 ) sin ( α 2 ) + ( 2 + 1 ) cos ( α 2 ) × ( 2 + 1 ) = \frac{ \left( \sqrt[]{2}+1 \right) \cos \left( \frac{ \alpha }{2} \right) +sin \left( \frac{ \alpha }{2} \right) }{ \left( \sqrt[]{2}-1 \right) \sin \left( \frac{ \alpha }{2} \right) +cos \left( \frac{ \alpha }{2} \right) } \times \frac{ \left( \sqrt[]{2}+1 \right) }{ \left( \sqrt[]{2}+1 \right) }=\frac{ \left( \sqrt[]{2}+1 \right) \cos \left( \frac{ \alpha }{2} \right) +sin \left( \frac{ \alpha }{2} \right) }{\sin \left( \frac{ \alpha }{2} \right) + \left( \sqrt[]{2}+1 \right) \cos \left( \frac{ \alpha }{2} \right) } \times \left( \sqrt[]{2}+1 \right)

= 2 + 1 =\sqrt[]{2}+1

Let g ( n ) = f ( n 2019 ) = \text{Let g} \left( n \right) =\sqrt[]{f \left( \frac{n}{2019} \right) }= 9 n 2019 9 n 2019 + 3 ,we conclude that \sqrt[]{\frac{9^{\frac{n}{2019}}}{9^{\frac{n}{2019}}+3}}\text{ ,we conclude that }

1 + g ( n ) + 1 + g ( 2019 n ) 1 g ( n ) + 1 g ( 2019 n ) = 2 + 1. \frac{\sqrt[]{1+g \left( n \right) }+\sqrt[]{1+g \left( 2019-n \right) }}{\sqrt[]{1-g \left( n \right) }+\sqrt[]{1-g \left( 2019-n \right) }}=\sqrt[]{2}+1.

Finally let p ( n ) = 1 + g ( n ) = 1 + f ( n 2019 ) = 1 + 9 n 2019 9 n 2019 + 3 \text{Finally let p} \left( n \right) =\sqrt[]{1+g \left( n \right) }=\sqrt[]{1+\sqrt[]{f \left( \frac{n}{2019} \right) }}=\sqrt[]{1+\sqrt[]{\frac{9^{\frac{n}{2019}}}{9^{\frac{n}{2019}}+3}}}

and q ( n ) = 1 g ( n ) = 1 f ( n 2019 ) = 1 9 n 2019 9 n 2019 + 3 \text{and q} \left( n \right) =\sqrt[]{1-g \left( n \right) }=\sqrt[]{1-\sqrt[]{f \left( \frac{n}{2019} \right) }}=\sqrt[]{1-\sqrt[]{\frac{9^{\frac{n}{2019}}}{9^{\frac{n}{2019}}+3}}}

T h e r e f o r e , Therefore,~

p ( 1 ) + p ( 2018 ) q ( 1 ) + q ( 2018 ) = p ( 2 ) + p ( 2017 ) q ( 2 ) + q ( 2017 ) = = p ( 1009 ) + p ( 1010 ) q ( 1009 ) + q ( 1010 ) \frac{p \left( 1 \right) +p \left( 2018 \right) }{q \left( 1 \right) +q \left( 2018 \right) }=\frac{p \left( 2 \right) +p \left( 2017 \right) }{q \left( 2 \right) +q \left( 2017 \right) }= \ldots =\frac{p \left( 1009 \right) +p \left( 1010 \right) }{q \left( 1009 \right) +q \left( 1010 \right) }

= 1 2018 p ( n ) 1 2018 q ( n ) = 2 + 1. =\frac{ \sum _{1}^{2018}p \left( n \right) }{ \sum _{1}^{2018}q \left( n \right) }=\sqrt[]{2}+1.

Hence the value of A is ( 2 + 1 ) and hence [ A ] = 2. \text{Hence the value of A is }{(\sqrt[]{2}+1 )}\text{and hence} \left[ A \right] =2.

It is unnecessary to have text in LaTex, It is difficult to enter and it is not the standard used in Brilliant.org. I have edited you problem.

Chew-Seong Cheong - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...