A = 1 − 9 2 0 1 9 1 + 3 9 2 0 1 9 1 + 1 − 9 2 0 1 9 2 + 3 9 2 0 1 9 2 + 1 − 9 2 0 1 9 3 + 3 9 2 0 1 9 3 + … + 1 − 9 2 0 1 9 2 0 1 8 + 3 9 2 0 1 9 2 0 1 8 1 + 9 2 0 1 9 1 + 3 9 2 0 1 9 1 + 1 + 9 2 0 1 9 2 + 3 9 2 0 1 9 2 + 1 + 9 2 0 1 9 3 + 3 9 2 0 1 9 3 + … + 1 + 9 2 0 1 9 2 0 1 8 + 3 9 2 0 1 9 2 0 1 8
For A as defined above, find ⌊ A ⌋ .
Notation: ⌊ ⋅ ⌋ denotes the floor function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
It is unnecessary to have text in LaTex, It is difficult to enter and it is not the standard used in Brilliant.org. I have edited you problem.
Problem Loading...
Note Loading...
Set Loading...
L e t f ( x ) = 9 x + 3 9 x , then
f ( 1 − x ) = 9 1 − x + 3 9 1 − x = 9 x 9 + 3 9 x 9 = 9 + 3 ⋅ 9 x 9 = 3 ( 3 + 9 x ) 9 = 9 x + 3 3 .
Observe that f ( x ) + f ( 1 − x ) = 9 x + 3 9 x + 9 x + 3 3 = 9 x + 3 9 x + 3 = 1 .
Now if we define f ( x ) = sin 2 α for some α ϵ R, then the value of
f ( 1 − x ) = 1 − f ( x ) = 1 − sin 2 α = cos 2 α .
For example let sin 2 α = f ( 2 0 1 9 1 ) = 9 2 0 1 9 1 + 3 9 2 0 1 9 1 , then
cos 2 α = f ( 1 − 2 0 1 9 1 ) = f ( 2 0 1 9 2 0 1 8 ) = 9 2 0 1 9 2 0 1 8 + 3 9 2 0 1 9 2 0 1 8 .
Now consider the expression 1 − s i n α + 1 − c o s α 1 + s i n α + 1 + c o s α =
= ( 2 − 1 ) sin ( 2 α ) + c o s ( 2 α ) ( 2 + 1 ) cos ( 2 α ) + s i n ( 2 α ) × ( 2 + 1 ) ( 2 + 1 ) = sin ( 2 α ) + ( 2 + 1 ) cos ( 2 α ) ( 2 + 1 ) cos ( 2 α ) + s i n ( 2 α ) × ( 2 + 1 )
= 2 + 1
Let g ( n ) = f ( 2 0 1 9 n ) = 9 2 0 1 9 n + 3 9 2 0 1 9 n ,we conclude that
1 − g ( n ) + 1 − g ( 2 0 1 9 − n ) 1 + g ( n ) + 1 + g ( 2 0 1 9 − n ) = 2 + 1 .
Finally let p ( n ) = 1 + g ( n ) = 1 + f ( 2 0 1 9 n ) = 1 + 9 2 0 1 9 n + 3 9 2 0 1 9 n
and q ( n ) = 1 − g ( n ) = 1 − f ( 2 0 1 9 n ) = 1 − 9 2 0 1 9 n + 3 9 2 0 1 9 n
T h e r e f o r e ,
q ( 1 ) + q ( 2 0 1 8 ) p ( 1 ) + p ( 2 0 1 8 ) = q ( 2 ) + q ( 2 0 1 7 ) p ( 2 ) + p ( 2 0 1 7 ) = … = q ( 1 0 0 9 ) + q ( 1 0 1 0 ) p ( 1 0 0 9 ) + p ( 1 0 1 0 )
= ∑ 1 2 0 1 8 q ( n ) ∑ 1 2 0 1 8 p ( n ) = 2 + 1 .
Hence the value of A is ( 2 + 1 ) and hence [ A ] = 2 .