If tan x + cot x = 1 2 , solve for the value of sin 2 x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Half Angle Tangent Substitution
By Weierstrass substitution or tangent half-angle substitution, we have:
sin 2 x = 1 + tan 2 x 2 tan x = cot x + tan x 2 = 1 2 2 = 6 1 Divide up and down of the RHS by tan x
Problem Loading...
Note Loading...
Set Loading...
c o s x s i n x + s i n x c o s x = s i n x c o s x s i n 2 x + c o s 2 x = s i n x c o s x 1 = 1 2 ; s i n x c o s x = 1 2 1 ; (Note : s i n 2 x = 2 s i n x c o s x ) -> 2 s i n x c o s x = 1 / 6 -> s i n 2 x = 1 / 6 . Thus the answer is 1/6