Decagon in a Pentagon

Geometry Level 4

Every other side of a regular decagon is extended to form a regular pentagon.

If A d A_d is the area of the decagon and A p A_p is the area of the pentagon, then ( A d A p ) 2 = a b \left(\dfrac{A_d}{A_p}\right)^2 = \dfrac{a}{b} , where a a and b b are relatively prime positive integers.

Find a + b a + b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

David Vreken
Mar 30, 2019

The decagon and the pentagon share the same apothem, and the area of a regular polygon with n n sides and an apothem a a is A = n a 2 tan ( 180 ° n ) A = na^2 \tan \big(\frac{180°}{n}\big) , so A d = 10 a 2 tan ( 180 ° 10 ) = 10 a 2 5 2 5 5 A_d = 10a^2 \tan \big(\frac{180°}{10}\big) = 10a^2 \sqrt{\frac{5 - 2\sqrt{5}}{5}} and A p = 5 a 2 tan ( 180 ° 5 ) = 5 a 2 5 2 5 A_p = 5a^2 \tan \big(\frac{180°}{5}\big) = 5a^2 \sqrt{5 - 2\sqrt{5}} .

Therefore, ( A d A p ) 2 = ( 10 a 2 5 2 5 5 5 a 2 5 2 5 ) 2 = 4 5 \big(\frac{A_d}{A_p}\big)^2 = \Bigg(\frac{10a^2 \sqrt{\frac{5 - 2\sqrt{5}}{5}}}{5a^2 \sqrt{5 - 2\sqrt{5}}}\Bigg)^2 = \frac{4}{5} , so a = 4 a = 4 , b = 5 b = 5 , and a + b = 9 a + b = \boxed{9} .

Nice problem and solution.

Hana Wehbi - 2 years, 2 months ago
Chris Lewis
Mar 28, 2019

In the diagram below, O O is the centre of the decagon (and of the pentagon) and A A is the midpoint of one of the sides of the pentagon. B B and C C are vertices of the decagon and pentagon.

The required ratio of the areas is A d A p = O A B + O A B O A C = 2 O A B O A C = 2 A B A C \frac{A_d}{A_p}=\frac{\triangle OAB + \triangle OA'B}{\triangle OAC}=\frac{2\triangle OAB}{\triangle OAC}=\frac{2AB}{AC} , where the last relation holds as triangles O A B OAB and O A C OAC share the side O A OA , and B B is on A C AC .

But A B = O A tan 1 8 AB=OA \cdot \tan{18^\circ} and A C = O A tan 3 6 AC=OA \cdot \tan{36^\circ} ; so the ratio we want is just 2 tan 1 8 tan 3 6 = 2 5 \frac{2\tan{18^\circ}}{\tan{36^\circ}} = \frac{2}{\sqrt{5}} (using standard trig results for angles in a pentagon) giving the answer 2 2 + ( 5 ) 2 = 9 2^2+(\sqrt5)^2=\boxed9 .

Nice solution! I believe you have an extra square on the 5 of the last equation.

David Vreken - 2 years, 2 months ago

Yep, certainly did - fixed now, thank you!

Chris Lewis - 2 years, 2 months ago

The function inRadius computes the incircle of a n-sided regular polygon giving that the vertices are on a circle of radius of 1. The function uses the area of a triangle formula where the length of a single edge is the base and the desired inRadius is the altitude of the triangle.

inRadius = FullSimplify [ 2 Area [ Triangle [ Join [ Take [ CirclePoints [ { 0 , 0 } , { 1 , 0 } , $#$1 ] , 2 ] , ( 0 0 ) ] ] ] EuclideanDistance@@Take [ CirclePoints [ { 0 , 0 } , { 1 , 0 } , $#$1 ] , 2 ] ] & ; \text{inRadius}=\text{FullSimplify}\left[\frac{2 \text{Area}\left[\text{Triangle}\left[\text{Join}\left[\text{Take}[\text{CirclePoints}[\{0,0\},\{1,0\},\text{\$\#\$1}],2],\left( \begin{array}{cc} 0 & 0 \\ \end{array} \right)\right]\right]\right]}{\text{EuclideanDistance}\text{@@}\text{Take}[\text{CirclePoints}[\{0,0\},\{1,0\},\text{\$\#\$1}],2]}\right]\&;

The inRadii are used to scale the two polygons so that they have the same inRadii. The ratio of their areas is computed and the expression is simplified.

FullSimplify [ ( Area [ Polygon [ CirclePoints [ { 0 , 0 } , { inRadius ( 5 ) , 0 } , 10 ] ] ] Area [ Polygon [ CirclePoints [ { 0 , 0 } , { inRadius ( 10 ) , π 10 } , 5 ] ] ] ) 2 ] 4 5 \text{FullSimplify}\left[\left(\frac{\text{Area}[\text{Polygon}[\text{CirclePoints}[\{0,0\},\{\text{inRadius}(5),0\},10]]]}{\text{Area}\left[\text{Polygon}\left[\text{CirclePoints}\left[\{0,0\},\left\{\text{inRadius}(10),\frac{\pi }{10}\right\},5\right]\right]\right]}\right)^2\right] \Rightarrow \frac45

Anirudh Sreekumar
Mar 31, 2019

In the above figure ABCDEFGHIJ is a decagon inscribed in the pentagon PQRST,O is their common center. We have, Area of the decagon = 10 × Area ( Δ O I H ) Area of the pentagon = 5 × Area ( Δ P O T ) Now, Area ( Δ O I H ) = 1 2 d h h is the height Area ( Δ P O T ) = 1 2 ( d + 2 x ) h Consider Δ P W D sin α 2 = d 2 x Where α is the interior angle of a regular pentagon = 10 8 2 x = d sin α 2 = d sin 5 4 = d 5 + 1 4 , sin 5 4 = 5 + 1 4 ( d + 2 x ) = ( 4 5 + 1 + 1 ) d = ( ( 5 1 ) + 1 ) d = 5 d ( Area of the decagon Area of the pentagon ) 2 = ( 10 × Area ( Δ O I H ) 5 × Area ( Δ P O T ) ) 2 = ( 10 × 1 2 d h 5 × 1 2 ( d + 2 x ) h ) 2 = ( 2 d h 5 d h ) 2 = ( 2 5 ) 2 = 4 5 a + b = 9 \begin{aligned} &\text{In the above figure ABCDEFGHIJ is a decagon inscribed in the pentagon PQRST,O is their common center.}\\\\ \text{We have,}\\ \large \text{Area of the decagon}&=10\times \text{Area}({\Delta OIH})\\ \large \text{Area of the pentagon}&=5\times \text{Area}({\Delta POT})\\\\ \text{Now,} \text{ Area}(\Delta OIH)&=\dfrac{1}{2} d h \hspace{4mm}\color{#3D99F6}\small h \text{ is the height}\\ \text{ Area}(\Delta POT)&=\dfrac{1}{2} (d+2x) h\\\\ \text{Consider } \Delta PWD\\ \sin{\dfrac{\alpha}{2}}&=\dfrac{d}{2x}\hspace{4mm}\color{#3D99F6}\small\text{Where } \alpha \text{ is the interior angle of a regular pentagon}=108^{\small\circ}\\\\ \implies2x&=\dfrac{d}{\sin{\dfrac{\alpha}{2}}}=\dfrac{d}{\sin{54^{\small\circ}}}\\\\ &=\dfrac{d}{\dfrac{\sqrt{5}+1}{4}}\hspace{4mm}\color{#3D99F6}\small,\sin{54^{\small\circ}}=\dfrac{\sqrt{5}+1}{4}\\ \implies (d+2x)&=\left(\dfrac{4}{\sqrt{5}+1}+1\right)d\\ &=((\sqrt{5}-1)+1)d\\\\ &=\sqrt{5}d\\\\ \left(\dfrac{\text{Area of the decagon}}{\text{Area of the pentagon}}\right)^2&=\left(\dfrac{10\times \text{Area}({\Delta OIH})}{5\times \text{Area}({\Delta POT})}\right)^2\\ &=\left(\dfrac{10\times\dfrac{1}{2} d h}{5\times\dfrac{1}{2} (d+2x) h}\right)^2\\ &=\left(\dfrac{2d h}{\sqrt{5}d h}\right)^2\\ &=\left(\dfrac{2}{\sqrt5}\right)^2\\ &=\dfrac{4}{5}\\ \implies a+b&=\color{#EC7300} \boxed{\color{#333333}9}\end{aligned}

Nice solution! Thanks for sharing it.

David Vreken - 2 years, 2 months ago
Chew-Seong Cheong
Mar 29, 2019

Since we are dealing with ratio, we need only consider one-fifth of the two regular polygons as shown in the figure.

A d A p = [ O A B C ] [ O A D C ] where [ ] denotes the area of , = [ O B C ] [ O B C ] + [ C D E ] Let O B = O C = 1 = 1 2 sin 3 6 1 2 sin 3 6 + 1 2 C E × D E = sin 3 6 sin 3 6 + sin 2 1 8 tan 3 6 = 1 1 + sin 2 1 8 cos 3 6 = cos 3 6 cos 3 6 + 1 2 ( 1 cos 3 6 ) = 2 cos 3 6 1 + cos 3 6 See note: cos 3 6 = 1 + 5 4 = 2 ( 1 + 5 ) 5 + 5 = 2 5 \begin{aligned} \frac {A_d}{A_p} & = \frac {[OABC]}{[OADC]} & \small \color{#3D99F6} \text{where }[\ \cdot\ ] \text{ denotes the area of }\cdot, \\ & = \frac {[OBC]}{[OBC]+[CDE]} & \small \color{#3D99F6} \text{Let }OB=OC = 1 \\ & = \frac {\frac 12 \sin 36^\circ}{\frac 12 \sin 36^\circ + \frac 12 CE \times DE} \\ & = \frac {\sin 36^\circ}{\sin 36^\circ + \sin^2 18^\circ \tan 36^\circ} \\ & = \frac 1{1+ \frac {\sin^2 18^\circ}{\cos 36^\circ}} \\ & = \frac {\cos 36^\circ}{\cos 36^\circ+ \frac 12(1-\cos 36^\circ)} \\ & = \frac {2 \cos 36^\circ}{1+ \cos 36^\circ} & \small \color{#3D99F6} \text{See note: }\cos 36^\circ = \frac {1+\sqrt 5}4 \\ & = \frac {2(1+\sqrt 5)}{5+\sqrt 5} = \frac 2{\sqrt 5} \end{aligned}

Therefore, ( A d A p ) 2 = ( 2 5 ) 2 = 4 5 \left(\dfrac {A_d}{A_p}\right)^2 = \left(\dfrac 2{\sqrt 5}\right)^2 = \dfrac 45 a + b = 4 + 5 = 9 \implies a+b = 4+5 = \boxed 9 .


Note:

cos π 5 + cos 3 π 5 = 1 2 cos π 5 cos 2 π 5 = 1 2 2 cos π 5 2 ( 2 cos 2 π 5 1 ) = 1 4 cos 2 π 5 2 cos π 5 1 = 0 cos π 5 = 1 + 5 4 \begin{aligned} \cos \frac \pi 5 + \cos \frac {3\pi}5 & = \frac 12 \\ \cos \frac \pi 5 - \cos \frac {2\pi}5 & = \frac 12 \\ 2\cos \frac \pi 5 - 2 \left( 2 \cos^2 \frac \pi5 - 1\right) & = 1 \\ 4 \cos^2 \frac \pi 5 - 2\cos \frac \pi 5 - 1& = 0 \\ \implies \cos \frac \pi 5 = \frac {1+\sqrt 5}4 \end{aligned}

Nice solution! I believe near the end a minus sign should be an equal sign (so it should say 2 ( 1 + 5 ) 5 + 5 = 2 2 \frac{2(1 + \sqrt{5})}{5 + \sqrt{5}} = \frac{2}{\sqrt{2}} ).

David Vreken - 2 years, 2 months ago

Log in to reply

Thanks got it changed

Chew-Seong Cheong - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...