Deceiving powers #1

Algebra Level 3

{ x + y + z = 1 x 2 + y 2 + z 2 = 2 x 3 + y 3 + z 3 = 3 x 4 + y 4 + z 4 = a b \begin{cases} x+y+z=-1 \\ x^2+y^2+z^2=-2 \\ x^3+y^3+z^3=-3\\ x^4+y^4+z^4=\dfrac ab \end{cases}

In the last equation above, a a and b b are coprime integers, enter a + b |a|+|b| .


The answer is 55.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let P n = x n + y n + z n P^n = x^n+y^n+z^n , where n n is a positive integer; S 1 = x + y + z = 1 S_1 = x+y+z = -1 ; S 2 = x y + y z + z x S_2 = xy+yz+zx , and S 3 = x y z S_3 = xyz . By Newton's sums or identities , we have:

P 1 = S 1 = 1 P 2 = S 1 P 1 2 S 2 = 1 ( 1 ) 2 S 2 = 2 S 2 = 3 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 1 ( 2 ) 3 2 ( 1 ) + 3 S 3 = 3 S 3 = 13 2 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = 1 ( 3 ) 3 2 ( 2 ) 13 6 ( 1 ) = 49 6 \begin{aligned} P_1 & = S_1 = -1 \\ P_2 & = S_1 P_1 - 2S_2 = -1(-1) - 2S_2 = -2 & \small \blue{\implies S_2 = \frac 32} \\ P_3 & = S_1 P_2 - S_2P_1 + 3S_3 = -1(-2) - \frac 32(-1) + 3S_3 = -3 & \small \blue{\implies S_3 = - \frac {13}2} \\ P_4 & = S_1 P_3 - S_2P_2 + S_3P_1 = -1(-3) - \frac 32(-2) - \frac {13}6(-1) = \frac {49}6 \end{aligned}

Therefore, a + b = 49 + 6 = 55 |a|+|b| = 49+6 = \boxed{55} .

Nice one! I didn't know about Netwon's sums.

Saúl Huerta - 1 year, 5 months ago

Log in to reply

It is the standard way of solving this type of problems.

Chew-Seong Cheong - 1 year, 5 months ago

Last line - change P 3 P_3 to P 4 P_4 , and fourth line change S 2 S_2 to S 3 S_3 .

Yuriy Kazakov - 10 months ago

Log in to reply

Thanks. I have changed them

Chew-Seong Cheong - 10 months ago
Saúl Huerta
Jan 2, 2020

We can start by squaring equation #1:

( x + y + z ) 2 = ( 1 ) 2 (x+y+z)^2=(-1)^2

x 2 + y 2 + z 2 + 2 x y + 2 x z + 2 y z = 1 \color{#3D99F6}{x^2+y^2+z^2}\color{#69047E}{+2xy+2xz+2yz } \color{#333333}{=1}

We recognize x 2 + y 2 + z 2 = 2 \color{#3D99F6}{x^2+y^2+z^2}=-2 so:

2 x y + 2 x z + 2 y z = 3 \implies\color{#69047E}{2xy+2xz+2yz=3}

x y + x z + y z = 3 2 (a) \color{#69047E}{xy+xz+yz=\dfrac{3}{2}}\text{ (a)}

Now, if we cube equation #1:

( x + y + z ) 3 = ( 1 ) 3 (x+y+z)^3=(-1)^3

x 3 + y 3 + z 3 + 3 x 2 y + 3 x 2 z + 3 x y 2 + 3 x z 2 + 3 y 2 z + 3 y z 2 + 6 x y z = 1 \color{#3D99F6}{x^3+y^3+z^3}\color{#69047E}{+3x^2y+3x^2z+3xy^2+3xz^2+3y^2z+3yz^2+6xyz}\color{#333333}{=-1}

x 2 y + x 2 z + x y 2 + x z 2 + y 2 z + y z 2 + 2 x y z = 2 3 (b) \implies\color{#69047E}{x^2y+x^2z+xy^2+xz^2+y^2z+yz^2+2xyz=\dfrac{2}{3}}\text{ (b)}

Observe that if we multiply (a) \text{(a)} by x x , y y and z z :

x 2 y + x 2 z + x y z = 3 x 2 x^2y+x^2z+xyz=\dfrac{3x}{2}

x y 2 + x y z + y 2 z = 3 y 2 xy^2+xyz+y^2z=\dfrac{3y}{2}

x y z + x z 2 + y z 2 = 3 z 2 xyz+xz^2+yz^2=\dfrac{3z}{2}

And add them we get (b) \text{(b)} with an extra x y z xyz term, so:

x 2 y + x 2 z + x y 2 + x z 2 + y 2 z + y z 2 + 2 x y z = 3 2 ( x + y + z ) x y z \implies\color{#69047E}{x^2y+x^2z+xy^2+xz^2+y^2z+yz^2+2xyz}\color{#333333}{=\dfrac{3}{2}(x+y+z)-xyz}

2 3 = 3 2 x y z \color{#69047E}{\dfrac{2}{3}}\color{#333333}{=-\dfrac{3}{2}}-xyz

x y z = 13 6 \implies xyz=-\dfrac{13}{6}

We can also square equation #2 to get:

( x 2 + y 2 + z 2 ) 2 = x 4 + y 4 + z 4 + 2 x 2 y 2 + 2 x 2 z 2 + 2 y 2 z 2 4 (x^2+y^2+z^2)^2=\color{#EC7300}{x^4+y^4+z^4}\color{#D61F06}{+2x^2y^2+2x^2z^2+2y^2z^2}\color{#333333}{ \equiv 4}

To find out what the red terms are let us square equation (a) \text{(a)} :

( x y + x z + y z ) 2 = x 2 y 2 + x 2 z 2 + y 2 z 2 + 2 x 2 y z + 2 x y 2 z + 2 x y z 2 9 4 (xy+xz+yz)^2=\color{#D61F06}{x^2y^2+x^2z^2+y^2z^2}\color{#20A900}{+2x^2yz+2xy^2z+2xyz^2}\color{#333333}{\equiv \dfrac{9}{4}}

We can factor 2 x y z = 13 3 2xyz=-\dfrac{13}{3} from the green terms:

13 3 ( x + y + z ) = 13 3 \implies \color{#20A900}{-\dfrac{13}{3}(x+y+z)=\dfrac{13}{3}}

And we find out that x 2 y 2 + x 2 z 2 + y 2 z 2 = 25 12 \color{#D61F06}{x^2y^2+x^2z^2+y^2z^2}\color{#333333}{=-\dfrac{25}{12}} . Finally:

x 4 + y 4 + z 4 + 2 x 2 y 2 + 2 x 2 z 2 + 2 y 2 z 2 = 4 \color{#EC7300}{x^4+y^4+z^4}\color{#D61F06}{+2x^2y^2+2x^2z^2+2y^2z^2}\color{#333333}{=4}

x 4 + y 4 + z 4 25 6 = 4 \color{#EC7300}{x^4+y^4+z^4}\color{#D61F06}{-\dfrac{25}{6}}\color{#333333}{=4}

x 4 + y 4 + z 4 = 49 6 \implies\color{#EC7300}{x^4+y^4+z^4}\color{#333333}{=\dfrac{49}{6}}

The final answer is 49 + 6 = 55 49+6=\boxed{55}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...