Decent integral

Calculus Level 5

0 π / 2 d x ( ( a sin x ) 2 + ( b cos x ) 2 ) 2 = π ( a n + b n ) l a m b m \large \int_0^{\pi/2}\frac{dx}{((a\sin x)^{2}+(b\cos x)^{2})^{2}}=\frac{\pi(a^{n}+b^{n})}{la^{m}b^{m}} Given the above, where l l , m m , and n n are positive integers. Find l + n + m l+n+m .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 28, 2017

I = 0 π 2 d x ( a 2 sin 2 x + b 2 cos 2 x ) 2 Multiply up and down by sec 4 x = 0 π 2 sec 4 x ( a 2 tan 2 x + b 2 ) 2 d x Let t = tan x d t = sec 2 x d x = 0 t 2 + 1 ( a 2 t 2 + b 2 ) 2 d t = 1 a 2 0 a 2 t 2 + b 2 + a 2 b 2 ( a 2 t 2 + b 2 ) 2 d t = 1 a 2 0 1 a 2 t 2 + b 2 d t + a 2 b 2 a 2 0 1 ( a 2 t 2 + b 2 ) 2 d t By reduction formula (see note). \begin{aligned} I & = \int_0^\frac \pi 2 \frac {dx}{\left(a^2\sin^2 x + b^2 \cos^2 x \right)^2} & \small \color{#3D99F6} \text{Multiply up and down by }\sec^4 x \\ & = \int_0^\frac \pi 2 \frac {\sec^4 x}{\left(a^2\tan^2 x + b^2 \right)^2}\ dx & \small \color{#3D99F6} \text{Let }t = \tan x \implies dt = \sec^2 x \ dx \\ & = \int_0^\infty \frac {t^2+1}{\left(a^2t^2 + b^2 \right)^2}\ dt \\ & = \frac 1{a^2} \int_0^\infty \frac {a^2t^2+b^2 + a^2 - b^2}{\left(a^2t^2 + b^2 \right)^2}\ dt \\ & = \frac 1{a^2} \int_0^\infty \frac 1{a^2t^2 + b^2} \ dt + \frac {a^2-b^2}{a^2} \color{#3D99F6} \int_0^\infty \frac 1{\left(a^2t^2 + b^2 \right)^2}\ dt & \small \color{#3D99F6} \text{By reduction formula (see note).} \end{aligned}

= 1 a 2 0 1 a 2 t 2 + b 2 d t + a 2 b 2 a 2 ( 1 2 b 2 0 1 a 2 t 2 + b 2 d t + t 2 b 2 ( a 2 t 2 + b 2 ) 0 0 ) \begin{aligned} \ \ & = \frac 1{a^2} \int_0^\infty \frac 1{a^2t^2 + b^2} \ dt + \frac {a^2-b^2}{a^2} \color{#3D99F6}\left(\frac 1{2b^2} \int_0^\infty \frac 1{a^2t^2 + b^2} \ dt +\cancel{\frac t{2b^2(a^2t^2 + b^2)}\bigg|_0^\infty}^0 \right) \end{aligned}

= a 2 + b 2 2 a 2 b 2 0 1 a 2 t 2 + b 2 d t = a 2 + b 2 2 a 2 b 2 0 1 b 2 ( a 2 b 2 t 2 + 1 ) d t Let u = a b t d u = a b d t = a 2 + b 2 2 a 3 b 3 0 1 ( u 2 + 1 ) d t = a 2 + b 2 2 a 3 b 3 tan 1 u 0 = π ( a 2 + b 2 ) 4 a 3 b 3 \begin{aligned} \ \ & = \frac {a^2+b^2}{2a^2b^2} \int_0^\infty \frac 1{a^2t^2 + b^2} \ dt \\ & = \frac {a^2+b^2}{2a^2b^2} \int_0^\infty \frac 1{b^2\left({\color{#3D99F6}\frac {a^2}{b^2}t^2} + 1\right)} \ dt & \small \color{#3D99F6} \text{Let }u = \frac ab t \implies du = \frac ab \ dt \\ & = \frac {a^2+b^2}{2a^3b^3} \int_0^\infty \frac 1{\left({\color{#3D99F6} u^2} + 1\right)} \ dt \\ & = \frac {a^2+b^2}{2a^3b^3} \tan^{-1} u \bigg|_0^\infty \\ & = \frac {\pi(a^2+b^2)}{4a^3b^3} \end{aligned}

l + n + m = 4 + 2 + 3 = 9 \implies l + n + m = 4+2+3 = \boxed{9}


Reduction formula:

1 ( a x 2 + b ) n d x = 2 n 3 2 b ( n 1 ) 1 ( a x 2 + b ) n 1 d x + x 2 b ( n 1 ) ( a x 2 + b ) n 1 \small \displaystyle \int \frac 1{(ax^2+b)^n} \ dx = \frac {2n-3}{2b(n-1)} \int \frac 1{(ax^2+b)^{n-1}} \ dx + \frac x{2b(n-1)(ax^2+b)^{n-1}}

Nice Solution!!

Just a note: Instead of the reduction formula I think you can use that 1 is a linear combination of 1+t^2 and 1-t^2 and (1-t^2)/(1+t^2)^2 has a nice primitive. However, the reduction formula is more general.

Christopher Criscitiello - 3 years, 8 months ago

Log in to reply

Could you please check my solution.

Spandan Senapati - 3 years, 8 months ago
Spandan Senapati
Oct 11, 2017

Begin with the standard integral, 0 π / 2 d x a 2 sin 2 x + b 2 cos 2 x = π 2 a b \int _{0}^{\pi /2}\frac {dx}{a^2\sin ^2x+b^2\cos ^2x}=\frac {\pi }{2ab} .So clearly partial differentiation wrt,a and b yields π 2 a 2 b = 0 π / 2 2 a sin 2 x ( a 2 sin 2 x + b 2 cos 2 x ) 2 \frac {\pi}{2a^2b}=\int _{0}^{\pi /2}\frac {2a\sin ^2x}{(a^2\sin ^2x+b^2\cos ^2x)^2} .Similarly for b.Now its easy to divide our eq by 2 a 2a to get 0 π / 2 d x ( a 2 sin 2 x + b 2 cos 2 x ) 2 = π ( a 2 + b 2 ) 4 ( a 3 b 3 ) \int _{0}^{\pi /2}\frac {dx}{(a^2\sin ^2x+b^2\cos ^2x)^2}=\frac {\pi (a^2+b^2)}{4(a^3b^3)}

We could rather generalise this,let I n = 0 π / 2 d x ( a 2 cos 2 x + b 2 sin 2 x ) n I _{n}=\int _{0}^{\pi /2}\frac {dx}{(a^2\cos ^2x+b^2\sin ^2x)^n} ,using the same principle.

Nice solution bro! Same one I used.

Raghu Raman Ravi - 3 years, 8 months ago

Just 1 correction though. I think you wrote (a^3 + b^3) by mistake, instead of a^3b^3

Raghu Raman Ravi - 3 years, 8 months ago

Log in to reply

Yes,thanks.I will put that up.

Spandan Senapati - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...