∫ 0 π / 2 ( ( a sin x ) 2 + ( b cos x ) 2 ) 2 d x = l a m b m π ( a n + b n ) Given the above, where l , m , and n are positive integers. Find l + n + m .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice Solution!!
Just a note: Instead of the reduction formula I think you can use that 1 is a linear combination of 1+t^2 and 1-t^2 and (1-t^2)/(1+t^2)^2 has a nice primitive. However, the reduction formula is more general.
Begin with the standard integral, ∫ 0 π / 2 a 2 sin 2 x + b 2 cos 2 x d x = 2 a b π .So clearly partial differentiation wrt,a and b yields 2 a 2 b π = ∫ 0 π / 2 ( a 2 sin 2 x + b 2 cos 2 x ) 2 2 a sin 2 x .Similarly for b.Now its easy to divide our eq by 2 a to get ∫ 0 π / 2 ( a 2 sin 2 x + b 2 cos 2 x ) 2 d x = 4 ( a 3 b 3 ) π ( a 2 + b 2 )
We could rather generalise this,let I n = ∫ 0 π / 2 ( a 2 cos 2 x + b 2 sin 2 x ) n d x ,using the same principle.
Nice solution bro! Same one I used.
Just 1 correction though. I think you wrote (a^3 + b^3) by mistake, instead of a^3b^3
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 2 π ( a 2 sin 2 x + b 2 cos 2 x ) 2 d x = ∫ 0 2 π ( a 2 tan 2 x + b 2 ) 2 sec 4 x d x = ∫ 0 ∞ ( a 2 t 2 + b 2 ) 2 t 2 + 1 d t = a 2 1 ∫ 0 ∞ ( a 2 t 2 + b 2 ) 2 a 2 t 2 + b 2 + a 2 − b 2 d t = a 2 1 ∫ 0 ∞ a 2 t 2 + b 2 1 d t + a 2 a 2 − b 2 ∫ 0 ∞ ( a 2 t 2 + b 2 ) 2 1 d t Multiply up and down by sec 4 x Let t = tan x ⟹ d t = sec 2 x d x By reduction formula (see note).
= a 2 1 ∫ 0 ∞ a 2 t 2 + b 2 1 d t + a 2 a 2 − b 2 ( 2 b 2 1 ∫ 0 ∞ a 2 t 2 + b 2 1 d t + 2 b 2 ( a 2 t 2 + b 2 ) t ∣ ∣ ∣ ∣ 0 ∞ 0 )
= 2 a 2 b 2 a 2 + b 2 ∫ 0 ∞ a 2 t 2 + b 2 1 d t = 2 a 2 b 2 a 2 + b 2 ∫ 0 ∞ b 2 ( b 2 a 2 t 2 + 1 ) 1 d t = 2 a 3 b 3 a 2 + b 2 ∫ 0 ∞ ( u 2 + 1 ) 1 d t = 2 a 3 b 3 a 2 + b 2 tan − 1 u ∣ ∣ ∣ ∣ 0 ∞ = 4 a 3 b 3 π ( a 2 + b 2 ) Let u = b a t ⟹ d u = b a d t
⟹ l + n + m = 4 + 2 + 3 = 9
Reduction formula:
∫ ( a x 2 + b ) n 1 d x = 2 b ( n − 1 ) 2 n − 3 ∫ ( a x 2 + b ) n − 1 1 d x + 2 b ( n − 1 ) ( a x 2 + b ) n − 1 x