Deceptive looks

Algebra Level 1

If a = 1000 , b = 100 , c = 10 , a=1000, b=100, c=10, and d = 1 , d=1, evaluate

( a + b + c d ) + ( a + b c + d ) + ( a b + c + d ) + ( a + b + c + d ) . (a+b+c-d)+(a+b-c+d)+(a-b+c+d)+(-a+b+c+d).

2222 9999 1111 11010 1010

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( a + b + c d ) + ( a + b c + d ) + ( a b + c + d ) + ( a + b + c + d ) (a+b+c-d)+(a+b-c+d)+(a-b+c+d)+(-a+b+c+d)

= a + b + c d + a + b c + d + a b + c + d a + b + c + d = a+b+c-d+a+b-c+d+a-b+c+d-a+b+c+d

= 2 ( a + b + c + d ) =2(a+b+c+d)

= 2 ( 1000 + 100 + 10 + 1 ) = 2 × 1111 = 2222 =2(1000+100+10+1)=2\times1111=\boxed{2222}

a + b + c + d = 1000 + 100 + 10 + 1 = 1111 N o w , ( a + b + c d ) + ( a + b c + d ) + ( a b + c + d ) + ( a + b + c + d ) = a + b + c d + a + b c + d + a b + c + d a + b + c + d = a + b + c + d + a + b + c + d = 2 a + 2 b + 2 c + 2 d = 2 ( a + b + c + d ) = 2 ( 1111 ) = 2222 a+b+c+d=1000+100+10+1=1111\\ Now,\quad (a+b+c-d)+(a+b-c+d)+(a-b+c+d)+(-a+b+c+d)\\ =\quad a+b+c-d+a+b-c+d+a-b+c+d-a+b+c+d\\ =\quad a+b+c+d+a+b+c+d\\ =\quad 2a+2b+2c+2d\\ =\quad 2(a+b+c+d)\\ =\quad 2(1111)\\ =\quad 2222

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...