Decimal-Integers!

Algebra Level 2

N = x ’x’ have n-no of digits 999 999 n d i g i t s N = \large \dfrac{\underbrace{x}_{\text{'x' have n-no of digits}}}{\underbrace{999\ldots999}_{n-digits}} Is it possible to identify the decimal expansion of numbers, as stated above, without actual division?

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Sep 17, 2016

Look at the following examples: 1 9 = 0.1111 10 99 = 0.10101010 581 999 = 0.581581581 1945 9999 = 0.194519451945 Now, let’s see why this happens N = a 10 + b 100 + c 1000 + a 10000 + (or) 0. a b c a b c 1000 N = 100 a + 10 b + c + a 10 + b 100 + c 1000 + 1000 N = a + b + c + N 999 N = 100 a + 10 b + c 999 N = a b c since general form of 3 digit number is 100a + 10b + c _____________________________________________________________________________________ This similarly follows for any n-digit number N = a 10 + b 100 + c 1000 + n-digits + a 1 0 n + 1 + b 1 0 n + 2 + n-digits 1 0 n N = 1 0 n 1 a + 1 0 n 2 b + 1 0 n 3 c + n-digits + a 10 + b 100 + n-digits 1 0 n N = 1 0 n 1 a + 1 0 n 2 b + 1 0 n 3 c + n-digits + N 1 0 n N N = 1 0 n 1 a + 1 0 n 2 b + 1 0 n 3 c + n-digits ( 999 9 n d i g i t s ) N = 1 0 n 1 a + 1 0 n 2 b + 1 0 n 3 c + n-digits ( 999 9 n d i g i t s ) N = a b c d n d i g i t s using general form of n-digit number N = a b c d n d i g i t s 999 9 n d i g i t s \text{Look at the following examples:} \\ \dfrac{1}{9} = 0.1111\ldots \\ \dfrac{10}{99} = 0.10101010\ldots \\ \dfrac{581}{999} = 0.581581581\ldots \\ \dfrac{1945}{9999} = 0.194519451945\ldots \\ \text{Now, let's see why this happens} \\ N = \dfrac{\color{#D61F06}{a}}{\color{#3D99F6}{10}} + \dfrac{\color{#D61F06}{b}}{\color{#3D99F6}{100}} + \dfrac{\color{#D61F06}{c}}{\color{#3D99F6}{1000}} + \dfrac{\color{#D61F06}{a}}{\color{#3D99F6}{10000}} + \ldots \text{ (or) }\color{#D61F06}{0}.\color{#3D99F6}{abcabc}\ldots \\ \color{#3D99F6}{1000}N = \color{#D61F06}{100}a + \color{#D61F06}{10}b + c + \dfrac{a}{\color{#D61F06}{10}} + \dfrac{b}{\color{#D61F06}{100}} + \dfrac{c}{\color{#D61F06}{1000}} + \ldots \\ 1000N = a + b + c + \color{#3D99F6}{N} \\ 999N = 100a + 10b + c \\ \color{#3D99F6}{999}N = \color{#D61F06}{\overline{abc}} \text{ since general form of 3 digit number is 100a + 10b + c} \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}\\ \text{This similarly follows for any n-digit number} \\ N = \underbrace{\dfrac{\color{#D61F06}{a}}{\color{#3D99F6}{10}} + \dfrac{\color{#D61F06}{b}}{\color{#3D99F6}{100}} + \dfrac{\color{#D61F06}{c}}{\color{#3D99F6}{1000}} + \ldots}_{\text{n-digits}} + \underbrace{\dfrac{\color{#D61F06}{a}}{\color{#3D99F6}{10^{n+1}}} + \dfrac{\color{#D61F06}{b}}{\color{#3D99F6}{10^{n+2}}} + \ldots}_{\text{n-digits}} \\ \color{#3D99F6}{10^{n}}N = \underbrace{10^{\color{#3D99F6}{n-1}}\color{#D61F06}{a} + 10^{\color{#3D99F6}{n-2}}\color{#D61F06}{b} + 10^{\color{#3D99F6}{n-3}}\color{#D61F06}{c} + \ldots}_{\text{n-digits}} + \underbrace{\dfrac{\color{#D61F06}{a}}{\color{#3D99F6}{10}} + \dfrac{\color{#D61F06}{b}}{\color{#3D99F6}{100}} + \ldots}_{\text{n-digits}} \\ \color{#3D99F6}{10^{n}}N = \underbrace{10^{\color{#3D99F6}{n-1}}\color{#D61F06}{a} + 10^{\color{#3D99F6}{n-2}}\color{#D61F06}{b} + 10^{\color{#3D99F6}{n-3}}\color{#D61F06}{c} + \ldots}_{\text{n-digits}} + N \\ \color{#3D99F6}{10^{n}}N - N = \underbrace{10^{\color{#3D99F6}{n-1}}\color{#D61F06}{a} + 10^{\color{#3D99F6}{n-2}}\color{#D61F06}{b} + 10^{\color{#3D99F6}{n-3}}\color{#D61F06}{c} + \ldots}_{\text{n-digits}} \\ (\underbrace{999\ldots9}_{n-digits})N = \underbrace{10^{\color{#3D99F6}{n-1}}\color{#D61F06}{a} + 10^{\color{#3D99F6}{n-2}}\color{#D61F06}{b} + 10^{\color{#3D99F6}{n-3}}\color{#D61F06}{c} + \ldots}_{\text{n-digits}} \\ (\underbrace{999\ldots9}_{n-digits})N = \underbrace{\overline{abcd\ldots}}_{n-digits} \text{ using general form of n-digit number} \\ N = \dfrac{\underbrace{\overline{abcd\ldots}}_{n-digits}}{\underbrace{999\ldots9}_{n-digits}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...