Is it possible to identify the decimal expansion of numbers, as stated above, without actual division?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Look at the following examples: 9 1 = 0 . 1 1 1 1 … 9 9 1 0 = 0 . 1 0 1 0 1 0 1 0 … 9 9 9 5 8 1 = 0 . 5 8 1 5 8 1 5 8 1 … 9 9 9 9 1 9 4 5 = 0 . 1 9 4 5 1 9 4 5 1 9 4 5 … Now, let’s see why this happens N = 1 0 a + 1 0 0 b + 1 0 0 0 c + 1 0 0 0 0 a + … (or) 0 . a b c a b c … 1 0 0 0 N = 1 0 0 a + 1 0 b + c + 1 0 a + 1 0 0 b + 1 0 0 0 c + … 1 0 0 0 N = a + b + c + N 9 9 9 N = 1 0 0 a + 1 0 b + c 9 9 9 N = a b c since general form of 3 digit number is 100a + 10b + c _____________________________________________________________________________________ This similarly follows for any n-digit number N = n-digits 1 0 a + 1 0 0 b + 1 0 0 0 c + … + n-digits 1 0 n + 1 a + 1 0 n + 2 b + … 1 0 n N = n-digits 1 0 n − 1 a + 1 0 n − 2 b + 1 0 n − 3 c + … + n-digits 1 0 a + 1 0 0 b + … 1 0 n N = n-digits 1 0 n − 1 a + 1 0 n − 2 b + 1 0 n − 3 c + … + N 1 0 n N − N = n-digits 1 0 n − 1 a + 1 0 n − 2 b + 1 0 n − 3 c + … ( n − d i g i t s 9 9 9 … 9 ) N = n-digits 1 0 n − 1 a + 1 0 n − 2 b + 1 0 n − 3 c + … ( n − d i g i t s 9 9 9 … 9 ) N = n − d i g i t s a b c d … using general form of n-digit number N = n − d i g i t s 9 9 9 … 9 n − d i g i t s a b c d …