If a plain text message was first enciphered using the affine transformation , then was enciphered again using the hill cipher , where matrix , the enciphered message is: .
Decipher the enciphered message above and express the result as a string of integers.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Outline to decipher:
Convert X K Y A L G to two 3 X 1 blocks:
B 1 = ⎣ ⎢ ⎢ ⎡ 2 3 1 0 2 4 ⎦ ⎥ ⎥ ⎤ m o d 2 6 and B 2 = ⎣ ⎢ ⎢ ⎡ 0 1 1 6 ⎦ ⎥ ⎥ ⎤ m o d 2 6 .
Using A ∗ X j ≡ B j m o d 2 6 we solve obtaining X j ≡ A − 1 ∗ B j , where ( 1 < = j < = 2 ) and X 1 = ⎣ ⎢ ⎢ ⎡ x 1 1 x 1 2 x 1 3 ⎦ ⎥ ⎥ ⎤ m o d 2 6 and X 2 = ⎣ ⎢ ⎢ ⎡ x 2 1 x 2 2 x 2 3 ⎦ ⎥ ⎥ ⎤ m o d 2 6 , and list the numbers :
x 1 1 x 1 2 x 1 3 x 2 1 x 2 2 x 2 3 .
Now using the above numbers we decipher the list above using P j k ≡ a ˉ ∗ ( x j k − b ) m o d 2 6 , where ( 1 < = j < = 2 ) and ( 1 < = k < = 3 ) , and a ˉ is the inverse of a modulo 2 6 . Last convert each number P j k to it's corresponding letter L j k .
Begin: Find A − 1 .
B = A ∣ I = ⎣ ⎢ ⎢ ⎡ 1 6 5 2 3 1 1 1 3 1 0 7 1 0 0 0 1 0 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
R o w 1 ↔ R o w 2 ⟹
B = ⎣ ⎢ ⎢ ⎡ 5 1 6 2 3 1 1 1 1 0 3 7 0 1 0 1 0 0 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
2 1 ∗ R o w 1 ⟹
B = ⎣ ⎢ ⎢ ⎡ 1 1 6 2 3 2 1 1 1 2 3 7 0 1 0 2 1 0 0 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
1 0 ∗ R o w 1 + R o w 2 ⟹
B = ⎣ ⎢ ⎢ ⎡ 1 0 2 3 2 1 3 1 2 2 3 7 0 1 0 2 1 2 0 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
9 ∗ R o w 2 ⟹
B = ⎣ ⎢ ⎢ ⎡ 1 0 2 3 2 1 1 1 2 2 5 7 0 9 0 2 1 1 8 0 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
3 ∗ R o w 1 + R o w 3 ⟹
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 2 1 1 1 2 2 2 5 1 3 0 9 0 2 1 1 8 1 1 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
1 4 ∗ R o w 2 + R o w 3 ⟹
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 2 1 1 0 2 2 5 2 5 0 9 2 2 2 1 1 8 3 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
5 ∗ R o w 2 + R o w 1 ⟹
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 0 1 0 2 3 2 5 2 5 1 9 9 2 2 7 1 8 3 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
2 5 ∗ R o w 3 ⟹
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 0 1 0 2 3 2 5 1 1 9 9 4 7 1 8 2 3 0 0 2 5 ⎦ ⎥ ⎥ ⎤ m o d 2 6
R o w 3 + R o w 2 ⟹
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 0 1 0 2 3 0 1 1 9 1 3 4 7 1 5 2 3 0 2 5 2 5 ⎦ ⎥ ⎥ ⎤ m o d 2 6
3 ∗ R o w 3 + R o w 1 ⟹
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 0 1 0 0 0 1 5 1 3 4 2 4 1 5 2 3 2 3 2 5 2 5 ⎦ ⎥ ⎥ ⎤ m o d 2 6
⟹
A − 1 = ⎣ ⎢ ⎢ ⎡ 5 1 3 4 2 4 1 5 2 3 2 3 2 5 2 5 ⎦ ⎥ ⎥ ⎤ m o d 2 6
Using B 1 = ⎣ ⎢ ⎢ ⎡ 2 3 1 0 2 4 ⎦ ⎥ ⎥ ⎤ m o d 2 6 and B 2 = ⎣ ⎢ ⎢ ⎡ 0 1 1 6 ⎦ ⎥ ⎥ ⎤ m o d 2 6 ⟹
X ≡ ⎣ ⎢ ⎢ ⎡ 5 1 3 4 2 4 1 5 2 3 2 3 2 5 2 5 ⎦ ⎥ ⎥ ⎤ ∗ ⎣ ⎢ ⎢ ⎡ 2 3 1 0 2 4 0 1 1 6 ⎦ ⎥ ⎥ ⎤ ≡ ⎣ ⎢ ⎢ ⎡ 2 3 9 1 2 1 2 3 1 3 ⎦ ⎥ ⎥ ⎤ m o d 2 6
Our list of numbers to decipher are:
2 3 9 1 2 1 2 3 1 3
2 5 ∗ P + 1 6 ≡ C m o d 2 6 ⟹ P ≡ 2 5 ∗ ( C − 1 6 ) m o d 2 6
C 1 = 2 3 ⟹ P 1 ≡ 1 7 5 m o d 2 6 ≡ 1 9 m o d 2 6
C 2 = 9 ⟹ P 2 ≡ − 1 7 5 m o d 2 6 ≡ − 1 9 m o d 2 6 ≡ 7 m o d 2 6
C 3 = 1 2 ⟹ P 3 ≡ − 1 0 0 m o d 2 6 ≡ − 2 2 m o d 2 6 ≡ 4 m o d 2 6
C 4 = 1 2 ⟹ P 4 ≡ 4 m o d 2 6
C 5 = 3 ⟹ P 5 ≡ − 3 2 5 m o d 2 6 ≡ − 1 3 m o d 2 6 ≡ 1 3 m o d 2 6
C 6 ⟹ P 6 ≡ − 7 5 m o d 2 6 ≡ − 2 3 m o d 2 6 ≡ 3 m o d 2 6
∴ The message reads: T H E E N D .
This is an appropriate message since this is my last problem on ciphers.
As a string of integers we have: 1 9 7 4 4 1 3 3 .