Decomposition of cubes

Algebra Level 2

It's interesting to show that:

1 3 = 1 2 3 = 3 + 5 3 3 = 7 + 9 + 11 4 3 = 13 + 15 + 17 + 19 1^3=1 \\ 2^3=3+5 \\ 3^3=7+9+11 \\ 4^3=13+15+17+19 \\ \ldots \quad \ldots

If n 3 n^3 can be decomposed in this way so that the RHS of the equation contains 2021 2021 , find the value of n n .


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The row corresponding to n 3 n^3 has n n numbers, beginning with n 2 n + 1 n^2-n+1 and ending in n 2 + n 1 n^2+n-1 . Therefore n 2 n + 1 < 2021 , n 2 + n 1 > 2021 n^2-n+1<2021, n^2+n-1>2021 . Solving these two inequalities we get n 45 , n 45 n = 45 n\leq 45, n\geq 45\implies n=\boxed {45} .

Mahdi Raza
Apr 23, 2020

Visually

\[\begin{cases} 1^3 = 1 \\ 2^3 = 3 + 5 \\ 3^3 = 7 + 9 +11 \\ 4^3 = 13 + 15 + 17 + 19 \end{cases}

\quad \implies \quad

\begin{cases} 1^3 = \big(2({\color{Red}{1}}) - 1\big) \\ 2^3 = \big(2({\color{Red}{2}}) - 1\big) + \big(2({\color{Red}{3}}) - 1\big) \\ 3^3 = \big(2({\color{Red}{4}}) - 1\big) + \big(2({\color{Red}{5}}) - 1\big) + \big(2({\color{Red}{6}}) - 1\big) \\ 4^3 = \big(2({\color{Red}{7}}) - 1\big) + \big(2({\color{Red}{8}}) - 1\big) + \big(2({\color{Red}{9}}) - 1\big) + \big(2({\color{Red}{10}}) - 1\big) \end{cases}

\quad \implies \quad

\begin{cases} 1^3 = ({\color{Red}{1}}) \\ 2^3 = ({\color{Red}{2}}) + ({\color{Red}{3}}) \\ 3^3 = ({\color{Red}{4}}) + ({\color{Red}{5}}) + ({\color{Red}{6}}) \\ 4^3 = ({\color{Red}{7}}) + ({\color{Red}{8}}) + ({\color{Red}{9}}) + ({\color{Red}{10}}) \end{cases} \]

From this, 2021 2021 can be represented by ( 1011 ) ({\color{#D61F06}{1011}}) can be. The row of n 3 n^3 contains numbers from ( n 1 ) ( n ) 2 \frac{(n-1)(n)}{2} to ( n ) ( n + 1 ) 2 \frac{(n)(n+1)}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...