It's interesting to show that:
1 3 = 1 2 3 = 3 + 5 3 3 = 7 + 9 + 1 1 4 3 = 1 3 + 1 5 + 1 7 + 1 9 … …
If n 3 can be decomposed in this way so that the RHS of the equation contains 2 0 2 1 , find the value of n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
\[\begin{cases} 1^3 = 1 \\ 2^3 = 3 + 5 \\ 3^3 = 7 + 9 +11 \\ 4^3 = 13 + 15 + 17 + 19 \end{cases}
\quad \implies \quad
\begin{cases} 1^3 = \big(2({\color{Red}{1}}) - 1\big) \\ 2^3 = \big(2({\color{Red}{2}}) - 1\big) + \big(2({\color{Red}{3}}) - 1\big) \\ 3^3 = \big(2({\color{Red}{4}}) - 1\big) + \big(2({\color{Red}{5}}) - 1\big) + \big(2({\color{Red}{6}}) - 1\big) \\ 4^3 = \big(2({\color{Red}{7}}) - 1\big) + \big(2({\color{Red}{8}}) - 1\big) + \big(2({\color{Red}{9}}) - 1\big) + \big(2({\color{Red}{10}}) - 1\big) \end{cases}
\quad \implies \quad
\begin{cases} 1^3 = ({\color{Red}{1}}) \\ 2^3 = ({\color{Red}{2}}) + ({\color{Red}{3}}) \\ 3^3 = ({\color{Red}{4}}) + ({\color{Red}{5}}) + ({\color{Red}{6}}) \\ 4^3 = ({\color{Red}{7}}) + ({\color{Red}{8}}) + ({\color{Red}{9}}) + ({\color{Red}{10}}) \end{cases} \]
From this, 2 0 2 1 can be represented by ( 1 0 1 1 ) can be. The row of n 3 contains numbers from 2 ( n − 1 ) ( n ) to 2 ( n ) ( n + 1 )
Problem Loading...
Note Loading...
Set Loading...
The row corresponding to n 3 has n numbers, beginning with n 2 − n + 1 and ending in n 2 + n − 1 . Therefore n 2 − n + 1 < 2 0 2 1 , n 2 + n − 1 > 2 0 2 1 . Solving these two inequalities we get n ≤ 4 5 , n ≥ 4 5 ⟹ n = 4 5 .