Decryption challenge 1

Given

N = 23915 , e = 41 N = 23915 , e = 41 ,

and that the encoded text is

010010100111101100001000001000010010100111101100001000001000010010100111101100001000001000010010100111101010010100111101010010100111101100001000001000100001000001000010010100111101100001000001000010010100111101010010100111101010010100111101010010100111101100001000001000100001000001000010010100111101010010100111101100001000001000010010100111101100001000001000010010100111101010010100111101100001000001000010010100111101010010100111101010010100111101010010100111101010010100111101010010100111101100001000001000100001000001000010010100111101010010100111101010010100111101010010100111101100001000001000010010100111101100001000001000100001000001000010010100111101100001000001000100001000001000100001000001000010010100111101010010100111101100001000001000100001000001000100001000001000010010100111101010010100111101100001000001000100001000001000010010100111101100001000001000100001000001000100001000001000010010100111101100001000001000100001000001000100001000001000010010100111101100001000001000100001000001000010010100111101010010100111101100001000001000010010100111101100001000001000010010100111101100001000001000100001000001000100001000001000010010100111101010010100111101100001000001000010010100111101010010100111101010010100111101100001000001000010010100111101010010100111101010010100111101010010100111101010010100111101010010100111101100001000001000100001000001000010010100111101100001000001000010010100111101010010100111101100001000001000010010100111101100001000001000100001000001000100001000001000010010100111101010010100111101100001000001000100001000001000010010100111101010010100111101100001000001000010010100111101010010100111101010010100111101010010100111101010010100111101010010100111101010010100111101100001000001000100001000001000010010100111101010010100111101010010100111101100001000001000010010100111101010010100111101100001000001000100001000001000010010100111101010010100111101010010100111101010010100111101010010100111101010010100111101100001000001000100001000001000010010100111101010010100111101010010100111101010010100111101010010100111101010010100111101100001000001000100001000001000010010100111101100001000001000010010100111101010010100111101

Find the answer ( decryption links are provided in the note ).

Note - To make scrolling to read the number easier,click on the left side of the number and drag your mouse to the right side(though you shouldn't need to read it)


The answer is 1004.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tan Li Xuan
Apr 8, 2014

Given the extremely long binary sequence, and the variables N N and e e ,we can assume that the first step is an RSA encryption.After decrypting the sequence using the keys given above,we get

010101000110100001100101001000000110000101101110011100110111011101100101011100100010000001101001011100110010000000110001001100000011000000110100 010101000110100001100101001000000110000101101110011100110111011101100101011100100010000001101001011100110010000000110001001100000011000000110100

If we convert to a decimal number,this number is about 3.04111124326E+18 , way too big for the answer box.So we try converting using ASCII(American Standard Code for Information Interchange) and we get "The answer is 1004".So the answer is 1004 \boxed{1004} !

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...