Too many 5s

Algebra Level 4

If the sum n = 1 5555 5 n times 1 3 n \large \displaystyle \sum_{n=1}^{\infty} \dfrac{\overbrace{5555 \ldots 5}^{\text{n times}}}{13^n} can be represented as A B \dfrac{A}{B} where A A and B B are coprime positive integers, find A + B A+B .

Clarifications

The expanded form of above sum is 5 13 + 55 1 3 2 + 555 1 3 3 + \dfrac{5}{13} + \dfrac{55}{13^2} + \dfrac{555}{13^3} + \ldots


The answer is 101.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Akshat Sharda
Mar 27, 2016

S = 5 13 + 55 1 3 2 + 555 1 3 3 + S 13 = 5 1 3 2 + 55 1 3 3 + 555 1 3 4 + S S 13 = 12 S 13 = 5 13 + 50 1 3 2 + 500 1 3 3 + = 5 13 + 50 1 3 2 1 10 13 = 5 13 + 50 13 × 3 = 5 3 S = 13 12 5 3 = 65 36 65 + 36 = 101 \begin{aligned} S & = \frac{5}{13} + \frac{55}{13^2} + \frac{555}{13^3} + \ldots \\ \frac{S}{13} & = \frac{5}{13^2}+\frac{55}{13^3}+\frac{555}{13^4}+\ldots \\ S-\frac{S}{13} & = \frac{12S}{13} = \frac{5}{13}+\frac{50}{13^2}+\frac{500}{13^3}+\ldots \\ & = \frac{5}{13}+\frac{ \frac{50}{13^2} }{1-\frac{10}{13}} = \frac{5}{13}+\frac{50}{13×3}=\frac{5}{3} \\ S & = \frac{13}{12} \cdot \frac{5}{3}=\frac{65}{36} \Rightarrow 65+36=\boxed{101} \end{aligned}

Same solution here. +1

Akshay Yadav - 5 years, 2 months ago
Peter Macgregor
Mar 27, 2016

Begin by taking out the common factor 5 to get

S = 5 ( 1 13 + 11 1 3 2 + 111 1 3 3 ) S=5\left(\frac{1}{13}+\frac{11}{13^2}+\frac{111}{13^3}\dots\right)

Now write

111 111 111\dots111 with n ones as 1 0 n 1 9 \frac{10^n - 1}{9}

(e.g. 1 0 3 1 9 = 999 9 = 111 \frac{10^3 - 1}{9}=\frac{999}{9}=111 )

and take out the common factor 1 9 \frac{1}{9} to write the sum as

S = 5 9 ( n = 1 ( 1 0 n 1 1 3 n ) ) S=\frac{5}{9}\left(\sum_{n=1}^{\infty}\left(\frac{10^n - 1}{13^n}\right)\right)

Separate the summand into two geometric series to get

S = 5 9 ( n = 1 ( ( 10 13 ) n ( 1 13 ) n ) ) S=\frac{5}{9}\left(\sum_{n=1}^{\infty}\left(\left(\frac{10}{13}\right)^n-\left(\frac{1}{13}\right)^n\right)\right)

Now use the formula for summing infinite geometric series to get

S = 5 9 ( 10 13 1 10 13 1 13 1 1 13 ) S=\frac{5}{9}\left(\frac{\frac{10}{13}}{1-\frac{10}{13}}-\frac{\frac{1}{13}}{1-\frac{1}{13}}\right)

and so

S = 5 9 ( 10 3 1 12 ) = 5 9 39 12 = 65 36 = a b S=\frac{5}{9}\left(\frac{10}{3}-\frac{1}{12}\right)=\frac{5}{9}\frac{39}{12}=\frac{65}{36}=\frac{a}{b}

and so

a + b = 65 + 36 = 101 a+b=65+36=\boxed{101}

Exact same solution.

Sal Gard - 5 years, 2 months ago
Arjen Vreugdenhil
Mar 29, 2016

S = 5 ( 1 13 + 1 1 3 2 + ) + 50 ( 1 1 3 2 + 1 1 3 3 + ) + = 5 ( 1 + 10 13 + 1 0 2 1 3 2 + ) ( 1 13 + 1 1 3 2 + ) = 5 1 1 10 / 13 1 / 13 1 1 / 13 = 5 13 3 1 12 = 65 36 , S = 5\cdot \left(\frac 1{13} + \frac 1{13^2} + \cdots\right) + 50\cdot \left(\frac 1{13^2} + \frac 1{13^3} + \cdots\right) + \cdots \\ = 5\cdot \left(1 + \frac{10}{13} + \frac{10^2}{13^2} + \cdots\right)\cdot \left(\frac 1{13} + \frac 1{13^2} + \cdots\right) \\ = 5\cdot \frac{1}{1-10/13} \cdot \frac{1/13}{1-1/13} = 5\cdot \frac{13}{3} \cdot \frac{1}{12} = \frac{65}{36}, so that the answer is 65 + 36 = 101 65 + 36 = \boxed{101} .

Adams Ayoade
Mar 27, 2016

Exactly same here too. Interesting series.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...