Deduce a sum by 2% and make it a perfect square!

Algebra Level 3

[ ( n = 1 99 1 m = 1 n m ) 0.02 ] 1 2 = ? \left[\large \left(\Large{\sum_{n=1}^{99}} \frac1{\displaystyle \sum_{m=1}^n m} \right) - 0.02\right]^{\Large \frac{1}{2}} = \ ?


The answer is 1.4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sahil Silare
Aug 9, 2016

[ ( n = 1 99 1 m = 1 n m ) 0.02 ] 1 2 = ? \left[\large \left(\Large{\sum_{n=1}^{99}} \frac1{\displaystyle \sum_{m=1}^n m} \right) - 0.02\right]^{\Large \frac{1}{2}} = \ ? Then we can proceed as, [ ( n = 1 99 1 n ( n + 1 ) / 2 ) 0.02 ] 1 2 \left[\large \left(\Large{\sum_{n=1}^{99}} \frac1{n(n+1)/2} \right) - 0.02\right]^{\Large \frac{1}{2}} (as sum of first n natural numbers is n ( n + 1 ) / 2 n(n+1)/2 )

Then, [ ( n = 1 99 2 n ( n + 1 ) ) 0.02 ] 1 2 \left[\large \left(\Large{\sum_{n=1}^{99}} \frac2{n(n+1)} \right) - 0.02\right]^{\Large \frac{1}{2}} We can write the fraction as, A ( n ) + B ( n + 1 ) \frac{A}{(n)}+\frac{B}{(n+1)} A ( n + 1 ) + B ( n ) ( n ) ( n + 1 ) \frac{A(n+1)+B(n)}{(n)(n+1)} So we can compare as follows, 2 n ( n + 1 ) = A ( n + 1 ) + B ( n ) ( n ) ( n + 1 ) \frac2{n(n+1)}=\frac{A(n+1)+B(n)}{(n)(n+1)} 2 = A ( n + 1 ) + B ( n ) 2=A(n+1)+B(n) If n = 0 n=0 then, A = 2 A=2 If n = 1 n=-1 then, B = 2 B=-2 So we can write the fraction as, [ ( n = 1 99 ( 2 ( n ) 2 ( n + 1 ) ) ) 0.02 ] 1 2 \left[\large \left(\Large{\sum_{n=1}^{99}} \left(\frac2{(n)}-\frac2{(n+1)}\right)\right) - 0.02\right]^{\Large \frac{1}{2}}
[ ( n = 1 99 2 ( n ) n = 1 99 2 ( n + 1 ) ) 0.02 ] 1 2 \left[\large \left(\Large{\sum_{n=1}^{99}}\frac2{(n)}-\Large{\sum_{n=1}^{99}}\frac2{(n+1)}\right) - 0.02\right]^{\Large \frac{1}{2}} Now, [ ( 2 1 + 2 2 + 2 3 + + 2 99 ) ( 2 2 + 2 3 + 2 4 + + 2 100 ) 0.02 ] 1 2 \left[\large \left(\frac{2}{1}+\frac{2}{2}+\frac{2}{3}+\cdots+\frac{2}{99}\right)-\left(\frac{2}{2}+\frac{2}{3}+\frac{2}{4}+\cdots+\frac{2}{100}\right)- 0.02\right]^{\Large \frac{1}{2}} So all the terms from 2 2 \frac{2}{2} to 2 99 \frac{2}{99} will cancel out, The remaining part will be, [ ( 2 1 2 100 ) 0.02 ] 1 2 \left[\large \left(\frac{2}{1}-\frac{2}{100}\right)- 0.02\right]^{\Large \frac{1}{2}} ( 2 0.02 0.02 ) 1 2 \left(\large 2-0.02- 0.02\right)^{\Large \frac{1}{2}} ( 2 0.04 ) 1 2 \left(\large 2- 0.04\right)^{\Large \frac{1}{2}} ( 1.96 ) 1 2 \left( 1.96\right)^{\Large \frac{1}{2}} 1.4 1.4 So, the answer is 1.4 1.4 .

Neat solution! :)

Tapas Mazumdar - 4 years, 10 months ago

Thanks buddy! :)

Sahil Silare - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...