Deep number theory

Algebra Level 4

Find the no. of possible values of a which satisfy a 2 440 = b 2 { a }^{ 2 }-440={ b }^{ 2 } and 1|b


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Archit Boobna
Oct 5, 2014

a 2 440 = b 2 a 2 b 2 = 440 ( a + b ) ( a b ) = 440 L e t f 1 = ( a + b ) a n d f 2 = ( a b ) f 1 > f 2 , f 1 f 2 = 440 f 1 + f 2 = a + b + a b = 2 a f 1 + f 2 i s e v e n 440 = 2.2.2.5.11 = 2 3 . 5.11 N o . o f f a c t o r s o f 2 α . 3 β . 5 γ . 7 δ . . . . . i s ( α + 1 ) ( β + 1 ) ( γ + 1 ) ( δ + 1 ) . . . . . N o . o f f a c t o r s o f 2 3 . 5.11 i s 4.2.2 = 16 440 c a n b e w r i t t e n i n 16 w a y s i . e . ( T h i s i s d o n e t o s a t i s f y f 1 f 2 = 440 ) 1 440 440 1 2 220 220 2 4 110 110 4 5 88 88 5 8 55 55 8 10 44 44 10 11 40 40 11 20 22 22 20 f 1 > f 2 , 8 w a y s a r e e l i m i n a t e d N o w w e h a v e 8 w a y s l e f t i . e . 440 1 220 2 110 4 88 5 55 8 44 10 40 11 22 20 f 1 + f 2 i s e v e n , 4 w a y s a r e e l i m i n a t e d N o w w e h a v e 4 w a y s l e f t , i . e . C a s e 1 : 220 2 C a s e 2 : 110 4 C a s e 3 : 44 10 C a s e 4 : 22 20 S o , h e r e w e c a n s a y t h a t a n s w e r i s 4. B u t f u r t h e r e x p l a n a t i o n . . . . C a s e 1 : a + b = 220 a b = 2 a + b + a b = 222 2 a = 222 a = 111 C a s e 2 : a + b = 110 a b = 4 a + b + a b = 114 2 a = 114 a = 57 C a s e 3 : a + b = 44 a b = 10 a + b + a b = 54 2 a = 54 a = 27 C a s e 4 : a + b = 22 a b = 20 a + b + a b = 42 2 a = 42 a = 21 S o w e h a v e f o u r v a l u e s o f a w h i c h a r e 111 , 57 , 27 a n d 21 { a }^{ 2 }-440={ b }^{ 2 }\\ \therefore { a }^{ 2 }-{ b }^{ 2 }=440\\ \therefore (a+b)(a-b)=440\\ \\ Let\quad { f }_{ 1 }=(a+b)\quad and\quad { f }_{ 2 }=(a-b)\\ \boxed { \therefore { f }_{ 1 }>{ f }_{ 2 } } ,\boxed { { f }_{ 1 }{ f }_{ 2 }=440 } \\ \\ { f }_{ 1 }+{ f }_{ 2 }=a+b+a-b=2a\\ \boxed { \therefore { f }_{ 1 }+{ f }_{ 2 }\quad is\quad even } \\ \\ 440=2.2.2.5.11={ 2 }^{ 3 }.5.11\\ \\ No.\quad of\quad factors\quad of\quad { 2 }^{ \alpha }.{ 3 }^{ \beta }.{ 5 }^{ \gamma }.{ 7 }^{ \delta }.....\quad is\\ (\alpha +1)(\beta +1)(\gamma +1)(\delta +1).....\\ \therefore No.\quad of\quad factors\quad of\quad { 2 }^{ 3 }.5.11\quad is\\ 4.2.2=16\\ \\ \therefore 440\quad can\quad be\quad written\quad in\quad 16\quad ways\quad i.e.\\ (This\quad is\quad done\quad to\quad satisfy\quad \boxed { { f }_{ 1 }{ f }_{ 2 }=440 } )\\ 1*440\qquad 440*1\\ 2*220\qquad 220*2\\ 4*110\qquad 110*4\\ 5*88\qquad \quad 88*5\\ 8*55\qquad \quad 55*8\\ 10*44\qquad 44*10\\ 11*40\qquad 40*11\\ 20*22\qquad 22*20\\ \\ \boxed { { \because f }_{ 1 }>{ f }_{ 2 } } ,\quad 8\quad ways\quad are\quad eliminated\\ Now\quad we\quad have\quad 8\quad ways\quad left\quad i.e.\\ 440*1\qquad 220*2\qquad 110*4\\ 88*5\qquad \quad 55*8\quad \qquad 44*10\\ 40*11\qquad 22*20\\ \\ \boxed { \because { f }_{ 1 }+{ f }_{ 2 }\quad is\quad even } ,\quad 4\quad ways\quad are\quad eliminated\\ Now\quad we\quad have\quad 4\quad ways\quad left,\quad i.e.\\ Case\quad 1:\quad 220*2\\ Case\quad 2:\quad 110*4\\ Case\quad 3:\quad 44*10\\ Case\quad 4:\quad 22*20\\ \\ So,\quad here\quad we\quad can\quad say\quad that\quad answer\quad is\quad 4.\\ But\quad further\quad explanation....\\ \\ Case\quad 1:\\ a+b=220\\ a-b=2\\ \therefore a+b+a-b=222\\ \therefore 2a=222\\ \therefore a=\boxed { 111 } \\ \\ Case\quad 2:\\ a+b=110\\ a-b=4\\ \therefore a+b+a-b=114\\ \therefore 2a=114\\ \therefore a=\boxed { 57 } \\ \\ Case\quad 3:\\ a+b=44\\ a-b=10\\ \therefore a+b+a-b=54\\ \therefore 2a=54\\ \therefore a=\boxed { 27 } \\ \\ Case\quad 4:\\ a+b=22\\ a-b=20\\ \therefore a+b+a-b=42\\ \therefore 2a=42\\ \therefore a=\boxed { 21 } \\ \\ So\quad we\quad have\quad \boxed { four } \quad values\quad of\quad a\quad which\\ are\quad \boxed { 111 } ,\boxed { 57 } ,\boxed { 27 } \quad and\quad \boxed { 21 } \\ \\ \\ \\ \\ \\ \\ \\ \quad \quad \quad \quad \quad \\

BTW, this came in AMTI NMTC 2014 Sub Junior

Archit Boobna - 6 years, 8 months ago

Log in to reply

Why is this problem reported??

Anuj Shikarkhane - 6 years, 8 months ago

Log in to reply

I dont know, i have even given the clarification

Archit Boobna - 6 years, 8 months ago

Nice Explanation but can you please tell me that When you said that f1>f2 , How could you conclude that f1f2=440

Mehul Arora - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...