Define the undefined..

Calculus Level 4

The value of the expression

lim n 1 n + 1 + 1 n + 2 + . . . . . + 1 n + 5 n \displaystyle{\lim _{ n\rightarrow \infty }{ \frac { 1 }{ n+1 } } +\frac { 1 }{ n+2 } +.....+\frac { 1 }{ n+5n } }

can be written as ln ( a b ) \displaystyle{\ln { \left( \frac { a }{ b } \right) } } Find the value of a + b \displaystyle{a+b}


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vighnesh Raut
Mar 6, 2015

lim n 1 n + 1 + 1 n + 2 + . . . . . + 1 n + 5 n \displaystyle{\lim _{ n\rightarrow \infty }{ \frac { 1 }{ n+1 } +\frac { 1 }{ n+2 } +.....+\frac { 1 }{ n+5n } } \\ }

= lim n r = 1 5 n 1 n + r \displaystyle{=\lim _{ n\rightarrow \infty }{ \sum _{ r=1 }^{ 5n }{ \frac { 1 }{ n+r } } } }

= lim n 1 n r = 1 5 n 1 1 + r n \displaystyle{=\lim _{ n\rightarrow \infty }{ \frac { 1 }{ n } \sum _{ r=1 }^{ 5n }{ \frac { 1 }{ 1+\frac { r }{ n } } } } }

= 0 5 1 1 + x d x = ln 6 ln 1 = l n 6 \displaystyle{=\int _{ 0 }^{ 5 }{ \frac { 1 }{ 1+x } dx } =\ln { 6 } -\ln { 1 } =ln6\quad }

S o , a + b = 6 + 1 = 7 \displaystyle{So,\quad a+b=6+1=7}

Nice solution..!! Upvoted..

Harshvardhan Mehta - 6 years, 3 months ago

Log in to reply

Thnx....But I would love to know the method you used too..

Vighnesh Raut - 6 years, 3 months ago

Log in to reply

Same way... :P

Harshvardhan Mehta - 6 years, 3 months ago
Arturo Presa
Jun 16, 2018

Let us use the notation H n = 1 + 1 2 + 1 3 + . . . + 1 n . H_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}. The number H n H_n is called the n t h n^{th} - harmonic number. Then 1 n + 1 + 1 n + 2 + . . . + 1 n + 5 n = H 6 n H n = H 6 n ln 6 n H n + ln n + ln 6 n ln n = ( H 6 n ln 6 n ) ( H n ln n ) + ln 6 \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+5n}=H_{6n}-H_{n}=H_{6n}-\ln{6n}-H_{n}+\ln{n}+\ln{6n}-\ln{n}=(H_{6n}-\ln{6n})-(H_{n}-\ln{n})+\ln{6}

Now using that lim n ( H n ln n ) = γ , \lim_{n\rightarrow \infty}(H_n-\ln n)=\gamma, where γ \gamma is the Euler–Mascheroni constant, we obtain that lim n ( H 6 n H n ) = ln 6. \lim_{n\rightarrow \infty} (H_{6n}-H_{n})=\ln{6}. So that, the answer, 1 + 6 = 7 . 1+6=\boxed{7}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...