Definite Integral is not hard!

Calculus Level 5

The value of

0 x ( 1 + x 3 ) 2 d x \int_0^{\infty}\frac{x}{(1 + x^3)^2} dx

can be expressed as π a b c , \frac {\pi a \sqrt{b}}{c}, where a a and c c are coprime and b b is square-free. Find the value of the sum a + b + c . a+b+c.


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Sep 26, 2015

A simple substitution

Now let 1 1 + x 3 = u \large{\frac{1}{1+x^3 }=u}

x = ( 1 u u ) 1 3 \large{x=\left( \frac{1-u}{u} \right )^{\frac{1}{3}}}

x 2 ( 1 + x 3 ) 2 d x = 1 3 d u \large{\frac{x^2 }{(1+x^3 )^2} dx=-\frac{1}{3}du}

The integral now reduces to

I = 1 3 0 1 u 1 3 ( 1 u ) 1 3 d u \large{I=\frac{1}{3} \displaystyle \int^{1}_{0} u^{\frac{1}{3}}(1-u)^{-\frac{1}{3}} du}

Using

1 ) 0 1 t x 1 ( 1 t ) y 1 d t = Γ ( x ) Γ ( y ) Γ ( x + y ) \large{1) \displaystyle \int^{1}_{0} t^{x-1} (1-t)^{y-1} dt=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}}

2 ) Euler reflection formula Γ ( z ) Γ ( 1 z ) = π sin ( π z ) \large{2) \text{Euler reflection formula}~ \Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin(\pi z)}}

3 ) Γ ( 1 + z ) = z Γ ( z ) \large{3) \Gamma(1+z)=z\Gamma(z)}

here x = 4 3 x=\frac{4}{3} and y = 2 3 y=\frac{2}{3}

Thus we have

I = 1 3 Γ ( 4 3 ) Γ ( 2 3 ) Γ ( 4 + 2 3 ) \large{I=\frac{1}{3} \frac { \Gamma \left( \frac { 4 }{ 3 } \right) \Gamma \left( \frac { 2 }{ 3 } \right) }{ \Gamma \left( \frac { 4+2 }{ 3 } \right) } }

I = 1 3 × 1 3 Γ ( 1 3 ) Γ ( 2 3 ) Γ ( 2 ) \large{I=\frac{1}{3} \times \frac { 1 }{ 3 } \frac { \Gamma \left( \frac { 1 }{ 3 } \right) \Gamma \left( \frac { 2 }{ 3 } \right) }{ \Gamma \left( 2 \right) } }

I = 1 9 × π sin ( π 3 ) \large{I=\frac{1}{9} \times \frac { \pi }{ \sin { \left( \frac { \pi }{ 3 } \right) } } } from 2 ) 2)

I = 2 3 27 π \large{I=\boxed{\frac{2 \sqrt{3}}{27} \pi}}

Thanx for the solution!

Adarsh Kumar - 5 years, 8 months ago

@Tanishq Varshney We can also proceed by substituting x as tan(t) raised to the power 2/3.......

Aaghaz Mahajan - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...