∫ 0 1 ( ( 1 − x 9 ) 5 1 − ( 1 − x 5 ) 9 1 ) d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
∫ 0 1 ( ( 1 − x 9 ) 5 1 − ( 1 − x 5 ) 9 1 ) d x = ∫ 0 1 ( 1 − x 9 ) 5 1 d x − ∫ 0 1 ( 1 − x 5 ) 9 1 d x
Let t = x 9 ⇒ d t = 9 x 8 d x ⇒ d x = 9 1 t − 9 8 d t
⇒ ∫ 0 1 ( 1 − x 9 ) 5 1 d x = 9 1 ∫ 0 1 t − 9 8 ( 1 − t ) 5 1 d t = 9 1 ∫ 0 1 t 9 1 − 1 ( 1 − t ) 5 6 − 1 d t = 9 1 B ( 9 1 , 5 6 ) [ B ( m , n ) = Beta function ] = 9 Γ ( 4 5 5 9 ) Γ ( 9 1 ) Γ ( 5 6 ) [ Γ ( p ) = Gamma function ] = 9 × 4 5 1 4 Γ ( 4 5 1 4 ) 5 1 Γ ( 9 1 ) Γ ( 5 1 ) = 1 4 Γ ( 4 5 1 4 ) Γ ( 9 1 ) Γ ( 5 1 )
Similarly,
⇒ ∫ 0 1 ( 1 − x 5 ) 9 1 d x = 5 1 ∫ 0 1 t − 5 4 ( 1 − t ) 9 1 d t = 5 1 ∫ 0 1 t 5 1 − 1 ( 1 − t ) 9 1 0 − 1 d t = 5 1 B ( 5 1 , 9 1 0 ) = 5 Γ ( 4 5 5 9 ) Γ ( 5 1 ) Γ ( 9 1 0 ) = 5 × 4 5 1 4 Γ ( 4 5 1 4 ) 9 1 Γ ( 5 1 ) Γ ( 9 1 ) = 1 4 Γ ( 4 5 1 4 ) Γ ( 5 1 ) Γ ( 9 1 ) = ∫ 0 1 ( 1 − x 9 ) 5 1 d x
⇒ ∫ 0 1 ( ( 1 − x 9 ) 5 1 − ( 1 − x 5 ) 9 1 ) d x = 0
Now that you realized the answer is 0, find the one-line / one-paragraph solution.
Let's start from change x to u such that
( 1 − x 9 ) 5 1 = u then x = ( 1 − u 5 ) 9 1
substitute this into the first integral
∫ 0 1 ( 1 − x 9 ) 5 1 d x = ∫ 1 0 u d ( 1 − u 5 ) 9 1
− ∫ 0 1 u d ( 1 − u 5 ) 9 1 = − u ⋅ ( 1 − u 5 ) 9 1 + ∫ 0 1 ( 1 − u 5 ) 9 1 d u
the latter term vanish after combine with the latter integral.So we have
− u ⋅ ( 1 − u 5 ) 9 1 from 0 to 1 which is 0.
Problem Loading...
Note Loading...
Set Loading...
∫ 0 1 ( ( 1 − x 9 ) 5 1 − ( 1 − x 5 ) 9 1 ) d x = ∫ 0 1 ( 1 − x 9 ) 5 1 d x − ∫ 0 1 ( 1 − x 5 ) 9 1
Notice how this is just the area under x 9 + x 5 = 1
AREA - AREA = 0