Oh Oh I know this one!

Calculus Level 3

0 1 ( ( 1 x 9 ) 1 5 ( 1 x 5 ) 1 9 ) d x = ? \large \displaystyle \int_{0}^{1} \bigg ((1-x^{9})^{\frac{1}{5}}-(1-x^{5})^{\frac{1}{9}} \bigg) \, dx = \ ?


The answer is 0.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Andrew Yates
Aug 24, 2015

0 1 ( ( 1 x 9 ) 1 5 ( 1 x 5 ) 1 9 ) d x = 0 1 ( 1 x 9 ) 1 5 d x 0 1 ( 1 x 5 ) 1 9 \int_{0}^{1}((1-x^{9})^{\frac{1}{5}}-(1-x^{5})^{\frac{1}{9}})dx=\int_{0}^{1}(1-x^{9})^{\frac{1}{5}}dx-\int_{0}^{1}(1-x^{5})^{\frac{1}{9}}

Notice how this is just the area under x 9 + x 5 = 1 x^{9}+x^{5}=1

AREA - AREA = 0

Chew-Seong Cheong
Jun 12, 2015

0 1 ( ( 1 x 9 ) 1 5 ( 1 x 5 ) 1 9 ) d x = 0 1 ( 1 x 9 ) 1 5 d x 0 1 ( 1 x 5 ) 1 9 d x \begin{aligned} \int_0^1 {\left(\left(1-x^9\right)^{\frac{1}{5}}-\left(1-x^5\right)^{\frac{1}{9}}\right)dx} & = \int_0^1 {\left(1-x^9\right)^{\frac{1}{5}}dx} - \int_0^1 {\left(1-x^5\right)^{\frac{1}{9}}dx} \end{aligned}

Let t = x 9 d t = 9 x 8 d x d x = 1 9 t 8 9 d t \space t = x^9\quad \Rightarrow dt = 9x^8 dx \quad \Rightarrow dx = \dfrac{1}{9}t^{-\frac{8}{9}} dt

0 1 ( 1 x 9 ) 1 5 d x = 1 9 0 1 t 8 9 ( 1 t ) 1 5 d t = 1 9 0 1 t 1 9 1 ( 1 t ) 6 5 1 d t = 1 9 B ( 1 9 , 6 5 ) [ B ( m , n ) = Beta function ] = Γ ( 1 9 ) Γ ( 6 5 ) 9 Γ ( 59 45 ) [ Γ ( p ) = Gamma function ] = 1 5 Γ ( 1 9 ) Γ ( 1 5 ) 9 × 14 45 Γ ( 14 45 ) = Γ ( 1 9 ) Γ ( 1 5 ) 14 Γ ( 14 45 ) \begin{aligned} \Rightarrow \int_0^1 {\left(1-x^9\right)^{\frac{1}{5}}dx} & = \frac{1}{9} \int_0^1 { t^{-\frac{8}{9}} \left(1-t\right)^{\frac{1}{5}} dt} \\ & = \frac{1}{9} \int_0^1 { t^{\frac{1}{9} - 1} \left(1-t \right)^{\frac{6}{5} - 1} dt} \\ & = \frac{1}{9} \color{#3D99F6}{B \left(\frac{1}{9}, \frac{6}{5} \right) \quad [B(m,n) = \text{Beta function}]} \\ & = \color{#3D99F6} {\frac {\Gamma \left(\frac{1}{9} \right) \Gamma \left( \frac{6}{5} \right)} {9\Gamma \left(\frac{59}{45} \right)}\quad \space [\Gamma (p) = \text{Gamma function}]} \\ & = \frac {\frac{1}{5}\Gamma \left(\frac{1}{9} \right) \Gamma \left( \frac{1}{5} \right)} {9\times \frac{14}{45} \Gamma \left(\frac{14}{45} \right)} = \frac {\Gamma \left(\frac{1}{9} \right) \Gamma \left( \frac{1}{5} \right)} {14\Gamma \left(\frac{14}{45} \right)} \end{aligned}

Similarly,

0 1 ( 1 x 5 ) 1 9 d x = 1 5 0 1 t 4 5 ( 1 t ) 1 9 d t = 1 5 0 1 t 1 5 1 ( 1 t ) 10 9 1 d t = 1 5 B ( 1 5 , 10 9 ) = Γ ( 1 5 ) Γ ( 10 9 ) 5 Γ ( 59 45 ) = 1 9 Γ ( 1 5 ) Γ ( 1 9 ) 5 × 14 45 Γ ( 14 45 ) = Γ ( 1 5 ) Γ ( 1 9 ) 14 Γ ( 14 45 ) = 0 1 ( 1 x 9 ) 1 5 d x \begin{aligned} \Rightarrow \int_0^1 {\left(1-x^5\right)^{\frac{1}{9}}dx} & = \frac{1}{5} \int_0^1 { t^{-\frac{4}{5}} \left(1-t\right)^{\frac{1}{9}} dt} \\ & = \frac{1}{5} \int_0^1 { t^{\frac{1}{5} - 1} \left(1-t \right)^{\frac{10}{9} - 1} dt} \\ & = \frac{1}{5} B \left(\frac{1}{5}, \frac{10}{9} \right) = \frac {\Gamma \left(\frac{1}{5} \right) \Gamma \left( \frac{10}{9} \right)} {5\Gamma \left(\frac{59}{45} \right)} = \frac {\frac{1}{9}\Gamma \left(\frac{1}{5} \right) \Gamma \left( \frac{1}{9} \right)} {5\times \frac{14}{45} \Gamma \left(\frac{14}{45} \right)} \\ & = \frac {\Gamma \left(\frac{1}{5} \right) \Gamma \left( \frac{1}{9} \right)} {14\Gamma \left(\frac{14}{45} \right)} = \int_0^1 {\left(1-x^9\right)^{\frac{1}{5}}dx} \end{aligned}

0 1 ( ( 1 x 9 ) 1 5 ( 1 x 5 ) 1 9 ) d x = 0 \Rightarrow \displaystyle \int_0^1 {\left(\left(1-x^9\right)^{\frac{1}{5}}-\left(1-x^5\right)^{\frac{1}{9}}\right)dx} = \boxed{0}

Moderator note:

Now that you realized the answer is 0, find the one-line / one-paragraph solution.

Let's start from change x to u such that

( 1 x 9 ) 1 5 = u (1-x^{9})^{\dfrac{1}{5}}=u then x = ( 1 u 5 ) 1 9 x=(1-u^{5})^{\dfrac{1}{9}}

substitute this into the first integral

0 1 ( 1 x 9 ) 1 5 d x = 1 0 u d ( 1 u 5 ) 1 9 \displaystyle \int_{0}^{1} (1-x^{9})^{\dfrac{1}{5}} dx = \int_{1}^{0} u d(1-u^{5})^{\dfrac{1}{9}}

0 1 u d ( 1 u 5 ) 1 9 = u ( 1 u 5 ) 1 9 + 0 1 ( 1 u 5 ) 1 9 d u \displaystyle - \int_{0}^{1} u d (1-u^{5})^{\dfrac{1}{9}} = - u\cdot (1-u^{5})^{\dfrac{1}{9}} + \int_{0}^{1} (1-u^{5})^{\dfrac{1}{9}} du

the latter term vanish after combine with the latter integral.So we have

u ( 1 u 5 ) 1 9 \displaystyle - u\cdot (1-u^{5})^{\dfrac{1}{9}} from 0 0 to 1 1 which is 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...