Definit'e' Integral!!!

Calculus Level 3

1/3 1/2 1/5 1/4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Apr 15, 2015

incredible mind Do post a solution for this, frankly typing XD i used wolfram alpha.

u have to just find the indefinite integral which are just a few addition's and mul. consider

2x(1-x)

= -0.25 ( -8x(1-x) )

= -0.25 ( -2+2-8x(1-x) )

= -0.25 ( -2+2(1-4x(1-x) ) )

Thus

2x(1-x) e^2x(1-x)

=e^2x(1-x) [-0.25 ( -2+2(1-4x(1-x) ) )]

=-0.25 e^2x(1-x) [ -2+2(1-4x(1-x) ) ]

=using product rule

=-0.25 d/dx { (1-2x) e^2x(1-x) }

just integrate and get

I = -0.25 * (1-2x)e^2x(1-x)

incredible mind - 6 years, 1 month ago

Log in to reply

u mean this

2 x ( 1 x ) 2x(1-x)

= 0.25 ( 8 x ( 1 x ) ) -0.25 ( -8x(1-x) )

= 0.25 ( 2 + 2 8 x ( 1 x ) ) -0.25 ( -2+2-8x(1-x) )

= 0.25 ( 2 + 2 ( 1 4 x ( 1 x ) ) ) -0.25 ( -2+2(1-4x(1-x) ) ) Thus

2 x ( 1 x ) e 2 x ( 1 x ) 2x(1-x) e^{2x(1-x)}

= e 2 x ( 1 x ) [ 0.25 ( 2 + 2 ( 1 4 x ( 1 x ) ) ) ] e^{2x(1-x)} [-0.25 ( -2+2(1-4x(1-x) ) )]

= 0.25 e 2 x ( 1 x ) [ 2 + 2 ( 1 4 x ( 1 x ) ) ] -0.25 e^{2x(1-x)} [ -2+2(1-4x(1-x) ) ] =using product rule

= 0.25 d d x ( 1 2 x ) e 2 x ( 1 x ) -0.25 \frac{d}{dx} { (1-2x) e^{2x(1-x)} }

just integrate and get

I = 0.25 ( 1 2 x ) e 2 x ( 1 x ) I = -0.25 * (1-2x)e^{2x(1-x)}

Tanishq Varshney - 6 years, 1 month ago

I used a series to approximate the answer as 1 3 + 1 3 5 + 1 3 5 7 + . . . \frac{1}{3}+\frac{1}{3\cdot 5} +\frac{1}{3\cdot 5 \cdot 7}+... , which I'm not even sure is correct; I could've made a mistake. But, obviously, your way is better. I would have written it like this, however: 2 x ( 1 x ) e 2 x ( 1 x ) = 0.25 ( 2 ( 4 x ( x 1 ) e 2 x ( 1 x ) ) ) = 0.25 ( 2 ( 4 x 2 4 x ) e 2 x ( 1 x ) ) = 0.25 ( 2 ( ( 2 x 1 ) 2 1 ) e 2 x ( 1 x ) ) 2x(1-x)e^{2x(1-x)}=-0.25(2(4x(x-1)e^{2x(1-x)}))=-0.25(2(4x^2-4x)e^{2x(1-x)})=-0.25(2((2x-1)^2-1)e^{2x(1-x)}) = 0.25 ( 2 ( 1 2 x ) 2 e 2 x ( 1 x ) 2 e 2 x ( 1 x ) ) = 0.25 ( ( 1 2 x ) d d ( 2 x ( 1 x ) ) [ e 2 x ( 1 x ) ] ( 2 4 x ) 2 e 2 x ( 1 x ) ) =-0.25(2(1-2x)^2e^{2x(1-x)}-2e^{2x(1-x)})=-0.25((1-2x)\frac{d}{d(2x(1-x))}[e^{2x(1-x)}](2-4x)-2e^{2x(1-x)}) = 0.25 ( ( 1 2 x ) d d ( 2 x ( 1 x ) ) [ e 2 x ( 1 x ) ] d ( 2 x ( 1 x ) ) d x + d d x [ 1 2 x ] e 2 x ( 1 x ) ) = 0.25 ( ( 1 2 x ) d d x [ e 2 x ( 1 x ) ] + d d x [ 1 2 x ] e 2 x ( 1 x ) ) =-0.25((1-2x)\frac{d}{d(2x(1-x))}[e^{2x(1-x)}]\frac{d(2x(1-x))}{dx}+\frac{d}{dx}[1-2x]e^{2x(1-x)})=-0.25((1-2x)\frac{d}{dx}[e^{2x(1-x)}]+\frac{d}{dx}[1-2x]e^{2x(1-x)}) = 0.25 d d x [ ( 1 2 x ) e 2 x ( 1 x ) ] =-0.25\frac{d}{dx}[(1-2x)e^{2x(1-x)}]

James Wilson - 5 months ago
James Wilson
Jan 10, 2021

Set 2 x ( 1 x ) e 2 x ( 1 x ) = d d x [ ( a + b x ) e 2 x ( 1 x ) ] 2x(1-x)e^{2x(1-x)}=\frac{d}{dx}\Big[(a+bx)e^{2x(1-x)}\Big]

= b e 2 x ( 1 x ) + ( a + b x ) e 2 x ( 1 x ) ( 2 4 x ) =be^{2x(1-x)}+(a+bx)e^{2x(1-x)}(2-4x)

= ( 2 a + b + ( 4 a + 2 b ) x 4 b x 2 ) e 2 x ( 1 x ) . =(2a+b+(-4a+2b)x-4bx^2)e^{2x(1-x)}.

Equating coefficients results in

2 a + b = 0 2a+b=0

4 a + 2 b = 2 -4a+2b=2

4 b = 2 -4b=-2

There is a unique solution to these equations, namely, ( a , b ) = ( 1 4 , 1 2 ) . (a,b)=(-\frac{1}{4},\frac{1}{2}).

Thus, 2 x ( 1 x ) e 2 x ( 1 x ) d x = ( 1 4 + 1 2 x ) e 2 x ( 1 x ) + C . \int 2x(1-x)e^{2x(1-x)}dx = (-\frac{1}{4}+\frac{1}{2}x)e^{2x(1-x)}+C.

( 1 4 + 1 2 x ) e 2 x ( 1 x ) 0 1 = ( 1 4 + 1 2 ) e 0 ( 1 4 ) e 0 = 1 2 . (-\frac{1}{4}+\frac{1}{2}x)e^{2x(1-x)}\Big|_0^1 = (-\frac{1}{4}+\frac{1}{2})e^0-(-\frac{1}{4})e^0=\frac{1}{2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...