Definite Integral

Calculus Level 3

1 2 1 ( x + 1 ) x 2 1 d x = 1 a \large \int \limits _{ 1 } ^{ 2 } \frac{ 1 } { ( x + 1 ) \sqrt{ x^{ 2 } - 1 } } \, dx = \frac{ 1 } {\sqrt{ a } }

Find a a .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1 2 d x ( x + 1 x 1 ) 3 2 . ( x 1 ) 2 p u t x + 1 x 1 = t d x ( x 1 ) 2 = d t 2 3 d t 2 ( t ) 3 2 = [ 1 t ] 3 = 1 3 \int _{ 1 }^{ 2 }{ \frac { dx }{ { \left( \frac { x+1 }{ x-1 } \right) }^{ \frac { 3 }{ 2 } }.{ \left( x-1 \right) }^{ 2 } } } \\ put\quad \frac { x+1 }{ x-1 } =t\quad \quad \quad \frac { dx }{ { \left( x-1 \right) }^{ 2 } } =\frac { dt }{ -2 } \\ \int _{ \infty }^{ 3 }{ \frac { dt }{ -2{ \left( t \right) }^{ \frac { 3 }{ 2 } } } } =\left[ \frac { 1 }{ \sqrt { t } } \right] \begin{matrix} 3 \\ \infty \end{matrix}=\frac { 1 }{ \sqrt { 3 } }

Moderator note:

When doing a change of variables, you should also ensure that the function is differentiable in the region that you are using.

You should add words to explain what you are doing.

Rudraksh Shukla
Jan 18, 2016

Substitute x=sec(t) and solve.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...