If ∫ 0 1 ( 1 + x ) ( 2 + x ) x − x 2 d x = I , then find 1 0 0 0 I to the nearest integer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
One could also have used definite integral properties:
∫ − 2 π 2 π 3 + sin θ d θ = ∫ 0 2 π ( 3 + sin θ 1 + 3 − sin θ 1 ) d θ
= 6 ∫ 0 2 π 9 − sin 2 θ d θ
= ∫ 0 2 π 6 8 tan 2 θ + 9 sec 2 θ d θ
= 6 ∫ 0 ∞ 8 t 2 + 9 d t = 2 2 π
Similarly, ∫ − 2 π 2 π 5 + sin θ d θ = 2 6 π
Hence, answer is 2 ( 2 π ( 2 1 − 6 1 ) ) = 0 . 9 3 8 8 9
awssm soln....
I have used exactly the same approach
Problem Loading...
Note Loading...
Set Loading...
Rearrange and simplify the integral to get,
0 ∫ 1 ( 1 + x ) ( 2 + x ) 1 − ( 2 x − 1 ) 2 2 d x
Substituting 2 x − 1 = sin θ ,
− π / 2 ∫ π / 2 ( 3 + sin θ ) ( 5 + sin θ ) 4 d θ = 2 − π / 2 ∫ π / 2 3 + sin θ 1 − 5 + sin θ 1 d θ
2 − π / 2 ∫ π / 2 3 + sin θ 1 d θ − 2 − π / 2 ∫ π / 2 5 + sin θ 1 d θ
To evaluate both of these integrals, we use similar methods.
Substitute u = tan ( θ / 2 )
Hence,
sin θ = 1 + u 2 2 u and cos θ = 1 + u 2 1 − u 2
Also,
d θ = 1 + u 2 2 d u
Using all these substitutions, we get,
4 − 1 ∫ 1 3 u 2 + 2 u + 3 d u − 4 − 1 ∫ 1 5 u 2 + 2 u + 5 d u
Completing the square, integrating, and substituting the limits, we finally get,
I = 4 ( 0 . 5 5 5 3 6 − 0 . 3 2 0 6 3 ) = 0 . 9 3 8 8 9
Hence,
1 0 0 0 I = 9 3 8 . 8 9 ≈ 9 3 9