Definite integral

Calculus Level 5

If 0 1 d x ( 1 + x ) ( 2 + x ) x x 2 = I \displaystyle \int_{0}^{1} \frac{dx}{(1+x)(2+x) \sqrt{x-x^2}} = I , then find 1000 I 1000I to the nearest integer.


The answer is 939.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anish Puthuraya
Feb 10, 2014

Rearrange and simplify the integral to get,
0 1 2 d x ( 1 + x ) ( 2 + x ) 1 ( 2 x 1 ) 2 \displaystyle\int\limits_0^1 \frac{2dx}{(1+x)(2+x)\sqrt{1-(2x-1)^2}}

Substituting 2 x 1 = sin θ \displaystyle 2x-1 = \sin\theta ,
π / 2 π / 2 4 d θ ( 3 + sin θ ) ( 5 + sin θ ) = 2 π / 2 π / 2 1 3 + sin θ 1 5 + sin θ d θ \displaystyle\int\limits_{-\pi/2}^{\pi/2} \frac{4d\theta}{(3+\sin\theta)(5+\sin\theta)} = 2\int\limits_{-\pi/2}^{\pi/2} \frac{1}{3+\sin\theta} - \frac{1}{5+\sin\theta} d\theta

2 π / 2 π / 2 1 3 + sin θ d θ 2 π / 2 π / 2 1 5 + sin θ d θ 2\displaystyle\int\limits_{-\pi/2}^{\pi/2} \frac{1}{3+\sin\theta}d\theta - 2\int\limits_{-\pi/2}^{\pi/2} \frac{1}{5+\sin\theta}d\theta

To evaluate both of these integrals, we use similar methods.
Substitute u = tan ( θ / 2 ) \displaystyle u = \tan(\theta/2)

Hence,
sin θ = 2 u 1 + u 2 \displaystyle \sin\theta = \frac{2u}{1+u^2} and cos θ = 1 u 2 1 + u 2 \displaystyle \cos\theta = \frac{1-u^2}{1+u^2}
Also,
d θ = 2 d u 1 + u 2 \displaystyle d\theta = \frac{2du}{1+u^2}

Using all these substitutions, we get,
4 1 1 d u 3 u 2 + 2 u + 3 4 1 1 d u 5 u 2 + 2 u + 5 \displaystyle 4\int\limits_{-1}^{1} \frac{du}{3u^2+2u+3} - 4\int\limits_{-1}^{1} \frac{du}{5u^2+2u+5}

Completing the square, integrating, and substituting the limits, we finally get,
I = 4 ( 0.55536 0.32063 ) = 0.93889 \displaystyle I = 4(0.55536 - 0.32063) = 0.93889

Hence,
1000 I = 938.89 939 \displaystyle 1000I = 938.89 \approx \boxed{939}

One could also have used definite integral properties:

π 2 π 2 d θ 3 + sin θ = 0 π 2 ( 1 3 + sin θ + 1 3 sin θ ) d θ \displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d \theta}{3 + \sin \theta} = \int_{0}^{\frac{\pi}{2}} \bigg(\frac{1}{3 + \sin \theta} + \frac{1}{3 - \sin \theta} \bigg) d \theta

= 6 0 π 2 d θ 9 sin 2 θ \displaystyle 6 \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{9 - \sin^2 \theta}

= 0 π 2 6 sec 2 θ d θ 8 tan 2 θ + 9 \displaystyle \int_{0}^{\frac{\pi}{2}} 6 \frac{\sec^2 \theta d \theta}{8 \tan^2 \theta + 9}

= 6 0 d t 8 t 2 + 9 = π 2 2 \displaystyle 6 \int_{0}^{\infty} \frac{dt}{8t^2 + 9} = \frac{\pi}{2 \sqrt{2}}

Similarly, π 2 π 2 d θ 5 + sin θ = π 2 6 \displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d \theta}{5 + \sin \theta} = \frac{\pi}{2 \sqrt{6}}

Hence, answer is 2 ( π 2 ( 1 2 1 6 ) ) = 0.93889 \displaystyle 2 \bigg(\frac{\pi}{2}\bigg(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{6}}\bigg)\bigg) = 0.93889

jatin yadav - 7 years, 4 months ago

Log in to reply

Yeah. That's a better approach.

Anish Puthuraya - 7 years, 4 months ago

good problem

and good solution

Anirudha Nayak - 7 years, 3 months ago

awssm soln....

Richik Mukhopadhyay - 7 years, 1 month ago

I have used exactly the same approach

Ronak Agarwal - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...