If
∫ − 3 1 3 1 1 − x 4 x 4 cos − 1 ( 1 + x 2 2 x ) d x can be represented in the form a π [ π + b lo g ( c + 3 ) + d 3 ] then find the value of a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I solved it in the exact same manner
I don't understand the third line, which property did you used? Thanks! Nice solution!
Superb solution
Problem Loading...
Note Loading...
Set Loading...
cos − 1 y = 2 π − sin − 1 y cos − 1 1 + x 2 2 x = 2 π − sin − 1 1 + x 2 2 x = 2 π − 2 tan − 1 x I = ∫ − 3 1 3 1 [ 2 π 1 − X 4 X 4 − 1 − X 4 X 4 2 tan − 1 x ] d x A s 1 − X 4 X 4 2 tan − 1 x i s a n o d d f u n c t i o n i t s i n t e g r a l w i l l b e z e r o I = 2 2 π ∫ 0 3 1 [ − 1 + 1 − x 4 1 ] d x S o l v i n g t h i s w e g e t I = 1 2 π [ π + 3 lo g ( 2 + 3 ) − 4 3 ] T h e r e f o r e a + b + c + d = 1 3