Definite integral

Calculus Level 5

If

1 3 1 3 x 4 1 x 4 cos 1 ( 2 x 1 + x 2 ) d x \displaystyle\int _{ -\frac { 1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ \frac { { x }^{ 4 } }{ 1-{ x }^{ 4 } } } \cos ^{ -1 } \left({ \frac { 2x }{ 1+{ x }^{ 2 } } } \right) dx can be represented in the form π a [ π + b log ( c + 3 ) + d 3 ] \frac { \pi }{ a } [\pi +b\log { (c+\sqrt { 3 }) } +d\sqrt { 3 } ] then find the value of a + b + c + d a+b+c+d .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

cos 1 y = π 2 sin 1 y cos 1 2 x 1 + x 2 = π 2 sin 1 2 x 1 + x 2 = π 2 2 tan 1 x I = 1 3 1 3 [ π 2 X 4 1 X 4 X 4 1 X 4 2 tan 1 x ] d x A s X 4 1 X 4 2 tan 1 x i s a n o d d f u n c t i o n i t s i n t e g r a l w i l l b e z e r o I = 2 π 2 0 1 3 [ 1 + 1 1 x 4 ] d x S o l v i n g t h i s w e g e t I = π 12 [ π + 3 log ( 2 + 3 ) 4 3 ] T h e r e f o r e a + b + c + d = 13 \cos ^{ -1 }{ y } =\quad \frac { \pi }{ 2 } -\sin ^{ -1 }{ y } \\ \cos ^{ -1 }{ \frac { 2x }{ 1+{ x }^{ 2 } } } =\frac { \pi }{ 2 } -\sin ^{ -1 }{ \frac { 2x }{ 1+{ x }^{ 2 } } } \\ \quad \quad \ \quad \quad =\frac { \pi }{ 2 } -2\tan ^{ -1 }{ x } \quad \\ I\quad =\quad \int _{ -\frac { 1 }{ \sqrt { 3 } } }^{ \frac { 1 }{ \sqrt { 3 } } }{ [\frac { \pi }{ 2 } \frac { { X }^{ 4 } }{ 1-{ X }^{ 4 } } } -{ \frac { { X }^{ 4 } }{ 1-{ X }^{ 4 } } }2\tan ^{ -1 }{ x } ]dx\\ As\quad { \frac { { X }^{ 4 } }{ 1-{ X }^{ 4 } } }2\tan ^{ -1 }{ x }\quad is\quad an\quad odd\quad function\quad its\quad integral\quad will\quad be\quad zero\\ I\quad =2\frac { \pi }{ 2 } \int _{ 0 }^{ \frac { 1 }{ \sqrt { 3 } } }{ [-1+\frac { 1 }{ 1-{ x }^{ 4 } } } ]dx\\ \\ Solving\quad this\quad we\quad get\quad I\quad =\quad \frac { \pi }{ 12 } [\pi +3\log {( 2+\sqrt { 3 } ) } -4\sqrt { 3 } ]\\ Therefore\quad a+b+c+d=13\\ \\ \\ \\ \\

I solved it in the exact same manner

Ishan Shah - 6 years, 11 months ago

I don't understand the third line, which property did you used? Thanks! Nice solution!

Carlos David Nexans - 6 years, 10 months ago

Log in to reply

put x equal to tan(theta/2)

Himanshu Aswani - 5 years, 5 months ago

Superb solution

Sudhamsh Suraj - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...