Definite Integral Challenge

Calculus Level 3

0 2 ( 16 x 2 ) x 16 x 2 + ( 4 x ) ( 4 + x ) ( 12 + x 2 ) d x \large \int_{0}^{2}\frac{\left ( 16-x^2 \right )x}{16-x^2+\sqrt{\left ( 4-x \right )\left ( 4+x \right )\left ( 12+x^2 \right )}}\, dx

The integral above has a simple closed form. Find this closed form.

Give your answer to 3 decimal places.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Method 1:

For the integrand ( 16 x 2 ) x 16 x 2 + ( 4 x ) ( 4 + x ) ( 12 + x 2 ) {\frac{{\left( {16 - {x^2}} \right)x}}{{16 - {x^2} + \sqrt {\left( {4 - x} \right)\left( {4 + x} \right)\left( {12 + {x^2}} \right)} }}} , rationalize: 0 2 x ( x 2 16 ) ( x 2 + x 4 + 4 x 2 + 192 16 ) 2 x 4 36 x 2 + 64 d x \int_0^2 {\frac{{x\left( {{x^2} - 16} \right)\left( {{x^2} + \sqrt { - {x^4} + 4{x^2} + 192} - 16} \right)}}{{2{x^4} - 36{x^2} + 64}}} \;dx

Expand the integrand 0 2 x ( x 2 16 ) ( x 2 + x 4 + 4 x 2 + 192 16 ) 2 x 4 36 x 2 + 64 \int_0^2 {\frac{{x\left( {{x^2} - 16} \right)\left( {{x^2} + \sqrt { - {x^4} + 4{x^2} + 192} - 16} \right)}}{{2{x^4} - 36{x^2} + 64}}} : ( 16 x x 4 + 4 x 2 + 192 2 x 4 36 x 2 + 64 + 256 x 2 x 4 36 x 2 + 64 + x 5 2 x 4 36 x 2 + 64 + x 3 x 4 + 4 x 2 + 192 2 x 4 36 x 2 + 64 32 x 3 2 x 4 36 x 2 + 64 ) d x \int_{}^{} {\left( { - \frac{{16x\sqrt { - {x^4} + 4{x^2} + 192} }}{{2{x^4} - 36{x^2} + 64}} + \frac{{256x}}{{2{x^4} - 36{x^2} + 64}} + \frac{{{x^5}}}{{2{x^4} - 36{x^2} + 64}} + \frac{{{x^3}\sqrt { - {x^4} + 4{x^2} + 192} }}{{2{x^4} - 36{x^2} + 64}} - \frac{{32{x^3}}}{{2{x^4} - 36{x^2} + 64}}} \right)} \;dx

The anti-derivative of 16 x x 4 + 4 x 2 + 192 2 x 4 36 x 2 + 64 + 256 x 2 x 4 36 x 2 + 64 + x 5 2 x 4 36 x 2 + 64 + x 3 x 4 + 4 x 2 + 192 2 x 4 36 x 2 + 64 32 x 3 2 x 4 36 x 2 + 64 { - \frac{{16x\sqrt { - {x^4} + 4{x^2} + 192} }}{{2{x^4} - 36{x^2} + 64}} + \frac{{256x}}{{2{x^4} - 36{x^2} + 64}} + \frac{{{x^5}}}{{2{x^4} - 36{x^2} + 64}} + \frac{{{x^3}\sqrt { - {x^4} + 4{x^2} + 192} }}{{2{x^4} - 36{x^2} + 64}} - \frac{{32{x^3}}}{{2{x^4} - 36{x^2} + 64}}} is 1 4 ( x 2 + x 4 + 4 x 2 + 192 14 ln ( x 4 + 4 x 2 + 192 + 14 ) ) + C \frac{1}{4}\left( {{x^2} + \sqrt { - {x^4} + 4{x^2} + 192} - 14\ln \left( {\sqrt { - {x^4} + 4{x^2} + 192} + 14} \right)} \right) + C : [ 1 4 ( x 2 + x 4 + 4 x 2 + 192 14 ln ( x 4 + 4 x 2 + 192 + 14 ) ) ] 0 2 \left. {\left[ {\frac{1}{4}\left( {{x^2} + \sqrt { - {x^4} + 4{x^2} + 192} - 14\ln \left( {\sqrt { - {x^4} + 4{x^2} + 192} + 14} \right)} \right)} \right]} \right|_0^2

Evaluate the antiderivative! [ 1 4 ( 2 2 + 2 4 + 4 ( 2 ) 2 + 192 14 ln ( ( 2 ) 4 + 4 ( 2 ) 2 + 192 + 14 ) ) ] [ 1 4 ( 0 2 + 0 4 + 4 ( 0 ) 2 + 192 14 ln ( ( 0 ) 4 + 4 ( 0 ) 2 + 192 + 14 ) ) ] \left[ {\frac{1}{4}\left( {{2^2} + \sqrt { - {2^4} + 4{{\left( 2 \right)}^2} + 192} - 14\ln \left( {\sqrt { - {{\left( 2 \right)}^4} + 4{{\left( 2 \right)}^2} + 192} + 14} \right)} \right)} \right] - \left[ {\frac{1}{4}\left( {{0^2} + \sqrt { - {0^4} + 4{{\left( 0 \right)}^2} + 192} - 14\ln \left( {\sqrt { - {{\left( 0 \right)}^4} + 4{{\left( 0 \right)}^2} + 192} + 14} \right)} \right)} \right] [ 1 4 ( 4 + 8 3 14 ln ( 14 + 8 3 ) ) ] [ 1 4 ( 8 3 14 ln ( 14 + 8 3 ) ) ] \left[ {\frac{1}{4}\left( {4 + 8\sqrt 3 - 14\ln \left( {14 + 8\sqrt 3 } \right)} \right)} \right] - \left[ {\frac{1}{4}\left( {8\sqrt 3 - 14\ln \left( {14 + 8\sqrt 3 } \right)} \right)} \right] = 1 = \boxed1

Method 2: Let I I denote the given integral. First we make the substitution y = x 2 y = {x^2} , so d y = 2 x d x dy = 2x\;dx . Then: 2 I = 0 4 16 y 16 y + ( 16 y ) ( 12 + y ) d y = 0 4 16 y 16 y + 12 + y d y 2I = \int_0^4 {\frac{{16 - y}}{{16 - y + \sqrt {\left( {16 - y} \right)\left( {12 + y} \right)} }}} \;dy = \int_0^4 {\frac{{\sqrt {16 - y} }}{{\sqrt {16 - y} + \sqrt {12 + y} }}\;dy}

Now make the substitution z = 4 y z = 4-y , so d z = d y dz=-dy . Then: 2 I = 0 4 12 + z 12 + z + 16 z d z 2I = \int_0^4 {\frac{{\sqrt {12 + z} }}{{\sqrt {12 + z} + \sqrt {16 - z} }}} \;dz

Adding the last two equations, we obtain 4 I = 0 4 d z = 4 4I = \int_0^4 {dz} = 4 and hence I = 1 . I = \boxed{1}.

Method 2 is ingenious. Thanks for posting it, Gregory. :)

Brian Charlesworth - 6 years, 7 months ago

Log in to reply

No problem!

Gregory Tewksbury - 6 years, 7 months ago

How is this a level two...

Trevor Arashiro - 6 years, 7 months ago

Log in to reply

..... Because of WolframAlpha, (and also because the answer is unity) :) Whatever the level, Method 2 is a thing of beauty, which is why I re-shared this question.

Brian Charlesworth - 6 years, 7 months ago

It is. It's just very, very tedious. Integration is like that. It's not difficult but it's very tedious.

Abhijeet Vats - 6 years, 7 months ago

Well, the problem isn't complicated to the point where you would need knowledge of trig substitutions, integration by parts, etc. to solve. It's a lot of algebra, but all you really need to know is substitution (i.e. method 2).

John Soong - 6 years, 7 months ago

sui generis work thanks ;) for posting it ..

Reymond Adlawan - 6 years, 6 months ago

I love this computation yeyy!! ¨ \ddot \smile

A Former Brilliant Member - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...