Definite integral: Practice

Calculus Level 1

Let f ( x ) = x 2 x + 1 f(x)=x^2-x+1 , find the value of the following definite integral: 1 3 f ( x ) d x \displaystyle\int_{1}^{3}f(x)\, dx

40 19 \frac{40}{19} 17 9 \frac{17}{9} 20 3 \frac{20}3 66 66

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

We can use Riemann sums here, its definition is: a b f ( x ) d x = lim n i = 1 n f ( x i ) Δ x \int_a^bf(x)\,\mathrm dx=\lim\limits_{n\to\infty}\sum_{i=1}^{n}f(x_i^*)\Delta x where Δ x = b a n \Delta x=\dfrac{b-a}{n} and x i = a + ( Δ x ) i x_i^*=a+(\Delta x)i . For our problem, we recognize that: Δ x = 3 1 n = 2 n \Delta x=\dfrac{3-1}{n}=\dfrac2n and so: x i = 1 + 2 i n x_i^*=1+\dfrac{2i}n , therefore: f ( x i ) = ( 1 + 2 i n ) 2 ( 1 + 2 i n ) + 1 = 1 + 4 i n + 4 i 2 n 2 1 2 i n + 1 = 1 + 2 i n + 4 i 2 n 2 . \begin{aligned} f(x_i^*)&=\left(1+\dfrac{2i}{n}\right)^2-\left(1+\dfrac{2i}{n}\right)+1\\ &=1+\dfrac{4i}{n}+\dfrac{4i^2}{n^2}\cancel{-1}-\dfrac{2i}{n}\cancel{+1}\\ &=1+\dfrac{2i}{n}+\dfrac{4i^2}{n^2}. \end{aligned} So by definition: 1 3 ( x 2 x + 1 ) d x = lim n i = 1 n f ( x i ) Δ x = lim n i = 1 n [ 1 + 2 i n + 4 i 2 n 2 ] 2 n = lim n [ i = 1 n 1 + i = 1 n 2 i n + i = 1 n 4 i 2 n 2 ] 2 n = lim n [ i = 1 n 1 + 2 n i = 1 n i + 4 n 2 i = 1 n i 2 ] 2 n = ( ) lim n [ n + 2 n n ( n + 1 ) 2 + 4 n 2 n ( n + 1 ) ( 2 n + 1 ) 6 ] 2 n = lim n [ 2 + 4 n 2 n ( n + 1 ) 2 + 8 n 3 n ( n + 1 ) ( 2 n + 1 ) 6 ] = lim n [ 2 + 2 n 2 + n n 2 + 4 3 2 n 3 + O ( n ) n 3 ] = 2 + 2 + 4 3 2 = 4 + 8 3 = 20 3 . \begin{aligned} \int_1^3(x^2-x+1)\,\mathrm dx&=\lim_{n\to\infty}\sum_{i=1}^n f(x_i^*)\Delta x\\ &=\lim_{n\to\infty}\sum_{i=1}^n \left[1+\dfrac{2i}{n}+\dfrac{4i^2}{n^2}\right]\dfrac2n\\ &=\lim_{n\to\infty} \left[\sum_{i=1}^n1+\sum_{i=1}^n\dfrac{2i}{n}+\sum_{i=1}^n\dfrac{4i^2}{n^2}\right]\dfrac2n\\ &=\lim_{n\to\infty} \left[\color{darkmagenta}{\sum_{i=1}^n1}+\dfrac{2}{n}\color{#3D99F6}{\sum_{i=1}^ni}+\dfrac{4}{n^2}\color{#20A900}{\sum_{i=1}^ni^2}\right]\dfrac2n\\ &\overset{\displaystyle(\star)}=\lim_{n\to\infty} \left[\color{darkmagenta}n+\dfrac{2}{n}\color{#3D99F6}{\dfrac{n(n+1)}{2}}+\dfrac{4}{n^2}\color{#20A900}{\dfrac{n(n+1)(2n+1)}{6}}\right]\dfrac2n\\ &=\lim_{n\to\infty} \left[2+\dfrac{4}{n^2}\dfrac{n(n+1)}{2}+\dfrac{8}{n^3}\dfrac{n(n+1)(2n+1)}{6}\right]\\ &=\lim_{n\to\infty} \left[2+2\dfrac{n^2+n}{n^2}+\dfrac{4}{3}\dfrac{2n^3+\mathcal O(n)}{n^3}\right]\\ &=2+2+\dfrac43\cdot2\\ &=4+\dfrac83=\dfrac{20}3. \end{aligned}

Your solution is entirely unnecessary, you can just use the power rule of antiderivatives...

Hobart Pao - 5 years, 7 months ago

Log in to reply

Yup, using Riemann sums is a confirmation of that result.

Vikas Sharma
Jun 7, 2014

put f(x)=xsquare-x+1 and solve

Hobart Pao
Nov 11, 2015

Use the power rule for antiderivatives. You get: ( x 3 3 x 2 2 + x ) 1 3 \left(\left. \frac{x^3}{3}-\frac{x^2}{2}+x \right) \right|_{1}^{3}

= 54 6 27 6 + 18 6 2 6 + 3 6 6 6 =\frac{54}{6}-\frac{27}{6}+\frac{18}{6}-\frac{2}{6}+\frac{3}{6}-\frac{6}{6}

= 40 6 = 20 3 =\frac{40}{6} = \boxed{\frac{20}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...