Definite integral Problem 2

Calculus Level 4

1 16 tan 1 x 1 d x \large \int_{1}^{16} \tan^{-1} \sqrt{\sqrt x - 1} \, dx

Given that the integral above is equal to a π 2 b a \pi - 2\sqrt b , where a a and b b are rational numbers, find the value of a × b a\times b .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Jatin Yadav
Nov 17, 2014

Hint: Substitute x = ( t + 1 ) 2 x =(t+1)^2 , then apply Integration by parts to get a = 16 3 a =\dfrac{16}{3} , and b = 3 b=3

We can also substitute x = sec 4 t \sec^4t

Akhil Bansal - 5 years, 8 months ago

Sir,It may be done by partial integration after taking x x = ( t + 1 ) 2 (t+1)^{2} ? (as you have mentioned)

Parth Lohomi - 6 years, 6 months ago

Log in to reply

it comes like this

16 3 \frac{16}{3} π \pi - 2 2 3 \sqrt3

Parth Lohomi - 6 years, 6 months ago

1 16 arctan x 1 d x \quad \quad \int _{ 1 }^{ 16 }{ \arctan { \sqrt { \sqrt { x } -1 } } dx } \\

Put x = sec 4 θ d x = 4 sec 4 θ tan θ d θ x=\sec ^{ 4 }{ \theta } \\ \Rightarrow dx = 4\sec ^{ 4 }{ \theta } \tan { \theta }d\theta

0 π 3 4 θ sec 4 θ tan θ d θ \int _{ 0 }^{ \frac { \pi }{ 3 } }{ 4\theta \sec ^{ 4 }{ \theta } \tan { \theta } } d\theta

Using product rule,

4 θ sec 2 θ tan θ sec 2 θ d θ ) 4 0 π 3 sec 2 θ tan θ sec 2 θ d θ d θ 4 θ ( tan 2 θ + 1 ) tan θ sec 2 θ d θ ) 4 0 π 3 ( tan 2 θ + 1 ) tan θ sec 2 θ d θ d θ 4 θ ( tan 4 θ 4 + tan 2 θ 2 ) 4 0 π 3 ( tan 4 θ 4 + tan 2 θ 2 ) d θ θ tan 4 θ + 2 θ tan 2 θ 0 π 3 ( tan 2 θ ) ( tan 2 θ + 2 ) d θ θ tan 4 θ + 2 θ tan 2 θ 0 π 3 tan 2 θ ( sec 2 θ + 1 ) d θ θ tan 4 θ + 2 θ tan 2 θ 0 π 3 tan 2 θ sec 2 θ d θ 0 π 3 sec 2 θ d θ + 0 π 3 d θ θ tan 4 θ + 2 θ tan 2 θ tan 3 θ 3 tan θ + θ \quad \quad \quad { 4\theta \int { \sec ^{ 2 }{ \theta } \tan { \theta } \sec ^{ 2 }{ \theta } d\theta } ) }-4\int _{ 0 }^{ \frac { \pi }{ 3 } }{ \int { \sec ^{ 2 }{ \theta } \tan { \theta } \sec ^{ 2 }{ \theta } d\theta } } d\theta \\ \Rightarrow \quad 4\theta \int { (\tan ^{ 2 }{ \theta } +1)\tan { \theta } \sec ^{ 2 }{ \theta } d\theta } )-4\int _{ 0 }^{ \frac { \pi }{ 3 } }{ \int { (\tan ^{ 2 }{ \theta } +1)\tan { \theta } \sec ^{ 2 }{ \theta } d\theta } } d\theta \\ \Rightarrow \quad 4\theta \left( \frac { \tan ^{ 4 }{ \theta } }{ 4 } +\frac { \tan ^{ 2 }{ \theta } }{ 2 } \right) -4\int _{ 0 }^{ \frac { \pi }{ 3 } }{ \left( \frac { \tan ^{ 4 }{ \theta } }{ 4 } +\frac { \tan ^{ 2 }{ \theta } }{ 2 } \right) } d\theta \\ \Rightarrow \quad \theta \tan ^{ 4 }{ \theta } +2\theta \tan ^{ 2 }{ \theta } -\int _{ 0 }^{ \frac { \pi }{ 3 } }{ (\tan ^{ 2 }{ \theta } ) } (\tan ^{ 2 }{ \theta } +2)d\theta \\ \Rightarrow \quad \theta \tan ^{ 4 }{ \theta } +2\theta \tan ^{ 2 }{ \theta } -\int _{ 0 }^{ \frac { \pi }{ 3 } }{ \tan ^{ 2 }{ \theta } } (\sec ^{ 2 }{ \theta } +1)d\theta \\ \Rightarrow \quad \theta \tan ^{ 4 }{ \theta } +2\theta \tan ^{ 2 }{ \theta } -\int _{ 0 }^{ \frac { \pi }{ 3 } }{ \tan ^{ 2 }{ \theta } \sec ^{ 2 }{ \theta } } d\theta -\int _{ 0 }^{ \frac { \pi }{ 3 } }{ \sec ^{ 2 }{ \theta } } d\theta +\int _{ 0 }^{ \frac { \pi }{ 3 } }{ d\theta } \\ \Rightarrow \quad \theta \tan ^{ 4 }{ \theta } +2\theta \tan ^{ 2 }{ \theta } -\frac { \tan ^{ 3 }{ \theta } }{ 3 } -\tan { \theta } +\theta

Now, inserting limits,

π 3 ( 9 ) + 2 π 3 ( 3 ) 3 3 + π 3 0 = 16 π 3 2 3 a = 16 3 , b = 3 \frac { \pi }{ 3 } (9)+2\frac { \pi }{ 3 } (3)-\sqrt { 3 } -\sqrt { 3 } +\frac { \pi }{ 3 } -0\quad =\quad \frac { 16\pi }{ 3 } -2\sqrt { 3 } \\ a=\frac { 16 }{ 3 } ,\quad b=3

And, you can do the math! :)

Did the same!

Prakhar Bindal - 4 years, 8 months ago
Mas Mus
Mar 29, 2015

Let p = x 1 p=\sqrt{\sqrt{x}-1} . Put x = 16 x=16 to get p = 3 p=\sqrt{3} and x = 1 x=1 to get p = 0 p=0

Meanwhile, x = ( p 2 + 1 ) 2 x=\left(p^2+1\right)^2 and d x = ( 4 p 3 + 4 p ) d p \mathrm dx=(4p^3+4p)\ \mathrm dp .

Now, we have new integration:

I = 0 3 ( 4 p 3 + 4 p ) tan 1 p d p I=\displaystyle \int_{0}^{\sqrt{3}} \left(4p^3+4p\right)\tan^{-1}p \ \mathrm dp

We will apply integration by parts to solve I I .

Let,

u = tan 1 p u=\tan^{-1}p , then d u = d p p 2 + 1 du=\frac{dp}{p^2+1}

v = 4 p 3 + 4 p d p = p 4 + 2 p 2 v=\displaystyle \int 4p^3+4p \ \mathrm dp=p^4+2p^2

I = ( p 4 + 2 p 2 ) tan 1 p ( p 2 + 1 ) 1 p 2 + 1 d p = ( p 2 + 1 ) 2 tan 1 p ( p 3 3 + p ) \begin{aligned}I&=\left(p^4+2p^2\right)\tan^{-1}p-\displaystyle \int{(p^2+1)}-\frac{1}{p^2+1} \ \mathrm dp\\ &= \left(p^2+1\right)^2\tan^{-1}p-\left(\frac{p^3}{3}+p\right) \end{aligned}

Subtitution p = 3 p=\sqrt{3} and p = 0 p=0 to find out the result of I I .

I = 16 × π 3 2 3 0 = 16 3 × π 2 3 I=16 \times\frac{\pi}{3}-2\sqrt{3}-0=\frac{16}{3} \times\pi-2\sqrt{3}

Now, we just yield the required answer, a × b = 16 a\times b = \huge\boxed{16}

For 1 16 T A N 1 x 1 d x \displaystyle{\int_{1}^{16}\ce{TAN} ^{-1}\sqrt{\sqrt{x}-1}\,dx}

1 16 T A N 1 x 1 d x = 1 3 ( x 1 3 ) x 1 + x T A N 1 ( x 1 ) + C Indefinite = 16 3 π 2 3 \begin{aligned}\int_{1}^{16}\ce{TAN} ^{-1}\sqrt{\sqrt{x}-1}\,dx &= -\frac{1}{3}\left(\sqrt[3]{\sqrt{x} -1}\right)-\sqrt{\sqrt{x} -1}+x \ce{TAN}^{-1}\left( \sqrt{\sqrt{x}-1}\right)+\ce{\color{grey}{C}} \quad\quad\quad\quad\quad\quad\quad\quad{\text{Indefinite}}\\&= \frac{16}{3}\pi -2\sqrt{3} \end{aligned}

where a = 16 3 a = \frac{16}{3} and b = 3 b= 3

a b = 16 \therefore \space a \cdot b = 16 \square

ADIOSS!!! \large \text{ADIOSS!!!}

Great, thanks!

Sandeep Bhardwaj - 5 years ago

Log in to reply

Gladly accepted Sir! I'm running out of time to full my step-by-step computation.

ADIOS!!! \large \text{ADIOS!!!}

What's this??

Satyam Tripathi - 4 years, 7 months ago

Log in to reply

What your asking for?

A Former Brilliant Member - 4 years, 7 months ago

How u have tan inverse in 3 parts ??

Satyam Tripathi - 4 years, 7 months ago
Yash Shroff
Nov 21, 2014

X=sec^4@ and then by parts.

Sujoy Roy
Nov 18, 2014

Hint: Substitute x = ( z 2 + 1 ) 2 x=(z^2+1)^2 , then apply Integration by parts, we find a = 16 3 a=\frac{16}{3} and b = 3 b=3 .

So, a b = 16 ab=\boxed{16}

improve more

improve more - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...