Definite integral red area

Calculus Level 4

26<I<27 28<I<29 25<I<26 24<I<25

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By using Polynomial long division and Partial fraction decomposition you get

y = 10 x 4 2 ( x 2 + 2 x + 10 ) 2 = 10 p ( x ) q ( x ) = 10 ( 1 4 x 3 + 24 x 2 + 40 x + 102 q ( x ) r ( x ) ) r ( x ) = b x + c q + d x + f q b = 4 c = 16 d = 32 f = 58 \begin{aligned} y&=10\frac{x^4-2}{(x^2+2x+10)^2}=10\frac{p(x)}{q(x)}\\ &=10\left(1-\underbrace{\frac{4x^3+24x^2+40x+102}{q(x)}}_{r(x)}\right)\\ r(x)&=\frac{bx+c}{\sqrt{q}}+\frac{dx+f}{q}\\ b&=4\\ c&=16\\ d&=-32\\ f&=-58 \end{aligned} .

\\ ~\\

And with the help of https://de.wikipedia.org/wiki/Partialbruchzerlegung /6.2 (I only found it in german) you can find a Antiderivative:

y d x = 10 ( x r d x ) r d x = 2 ln ( q ) + 95 27 arctan ( x + 1 3 ) + 144 13 ( x + 1 ) 9 1 q \begin{aligned} \int y\,\mathrm dx&=10\left(x-\int r\,\mathrm{d}x\right)\\ \int r\,\mathrm dx&=2\ln(\sqrt{q})+\frac{95}{27}\arctan\left(\frac{x+1}{3}\right)+\frac{144-13(x+1)}{9}\cdot\frac{1}{\sqrt{q}} \end{aligned}

\\

And so:

I 26 , 1 26 < I < 27 I \approx 26,1 ~~~~~~~\Rightarrow \boxed{26<I<27}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...