Definite integration...

Level 1

Find the value of lim n ( n ! n n ) 1 n \displaystyle \lim_{n \rightarrow \infty } \left(\dfrac{n!}{n^{n}}\right)^{ \frac{1}{n}}

where n ! = n × ( n 1 ) × ( n 2 ) . . . . × 2 × 1 n! = n\ \times (n-1) \times (n-2).... \times 2 \times 1 .

e e \infty e 2 e^{2} 1 e \frac{1}{e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The natural log of the given limit is lim n 1 n × ( ln ( n ! ) ln ( n n ) ) = lim n 1 n × ( l n ( n ! ) n ln ( n ) ) \displaystyle\lim_{n \to \infty} \dfrac{1}{n}\times (\ln(n!) - \ln(n^{n})) = \lim_{n \to \infty} \dfrac{1}{n} \times (ln(n!) - n\ln(n)) .

Now by Stirling's approximation l n ( n ! ) n ln ( n ) n ln(n!) \approx n\ln(n) - n for large n n , so our log limit then becomes lim n 1 n × ( n ln ( n ) n n ln ( n ) ) = 1 \displaystyle\lim_{n \to \infty} \dfrac{1}{n} \times (n\ln(n) - n - n\ln(n)) = -1 .

The original limit is then e 1 = 1 e e^{-1} = \boxed{\dfrac{1}{e}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...