Definite Integration Test - 4

Calculus Level 4

0 e 5 x sin 3 ( 4 x ) x d x = a π b c b arctan ( d b ) + a b arctan ( d b c ) \int_{0}^{\infty} \frac{\mathrm{e}^{-5x}\sin^3\left(4x\right)}{x} \ dx= \frac{a \pi}{b} - \frac{c}{b}\arctan\left(\frac{d}{b}\right) + \frac{a}{b}\arctan\left(\frac{d}{bc}\right)

In the equation above, a a , b b , c c , and d d are positive coprime integers. Submit a + b + c + d a+b+c+d .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Mar 16, 2020

If we define F b ( a ) = 0 e a x sin b x x d x F_b(a) \; = \; \int_0^\infty \frac{e^{-ax} \sin bx}{x}\,dx for a , b > 0 a,b > 0 then F b ( a ) 0 F_b(a) \to 0 as a a \to \infty , while F b ( a ) = 0 e a x sin b x d x = b a 2 + b 2 F'_b(a) \; = \; -\int_0^\infty e^{-ax} \sin bx\,dx \; = \; -\frac{b}{a^2 + b^2} and hence F b ( a ) = 1 2 π tan 1 a b F_b(a) \; = \; \tfrac12\pi - \tan^{-1}\tfrac{a}{b} Since sin 3 x = 3 sin x 4 sin 3 x \sin3x = 3\sin x - 4\sin^3x we deduce that 0 e a x sin 3 ( 4 x ) x d x = 3 4 F 4 ( a ) 1 4 F 12 ( a ) = 1 4 π 3 4 tan 1 a 4 + 1 4 tan 1 a 12 \int_0^\infty \frac{e^{-ax} \sin^3(4x)}{x}\,dx \; = \; \tfrac34F_4(a) - \tfrac14F_{12}(a) \; = \; \tfrac14\pi - \tfrac34\tan^{-1}\tfrac{a}{4} + \tfrac14\tan^{-1}\tfrac{a}{12} making the desired integral 1 4 π 3 4 tan 1 5 4 + 1 4 tan 1 5 12 \tfrac14\pi - \tfrac34\tan^{-1}\tfrac54 + \tfrac14\tan^{-1}\tfrac{5}{12} and hence the answer is 1 + 4 + 3 + 5 = 13 1 + 4 + 3 + 5 = \boxed{13} .

Greetings! I attempted your latest problem earlier and I gave it shot again today. I speak of the problem on a particle constrained to a paraboloid surface. In all honesty, I am grappling with it. I see a solution posted but I do not want to concede the problem yet. I tried to take a brute force numerical route (taking α \alpha as a tuning parameter) and I noticed that the answer must be close to 12 \approx 12 as the particle is seeming to converge to a single orbit in this ballpark. Any analytical attempts always yield an answer of α = 1 \alpha=1 which is the relatively trivial case of the particle moving in circles at a constant height.

I was wondering if you could give a tiny hint as to how to approach the problem? I hope I am making a reasonable request. Thanks in advance.

Karan Chatrath - 1 year ago

Log in to reply

That is in the right ballpark for α 0 \alpha_0 . If you look at my solution for the “Inspiration” problem, I found a definite integral for the angle the particle moved through during a half period (of z z oscillations). Do the same in this case, and the resulting angle is a function of α \alpha alone. You then want to make that angle equal to π \pi by finding the right value of α \alpha ...

Mark Hennings - 1 year ago

Log in to reply

Thank you very much. I will give it a shot again, soon.

Karan Chatrath - 1 year ago
Guilherme Niedu
Mar 17, 2020

A solution not as Brilliant as Mr @Mark Hennings one, but still:

I = 0 e 5 x sin 3 ( 4 x ) x d x \large \displaystyle I = \int_0^{\infty} \frac{ e^{-5x} \sin^3(4x)}{x} dx

Since sin ( 3 x ) = 3 sin ( x ) 4 sin 3 ( x ) \sin(3x) = 3 \sin(x) - 4 \sin^3(x) , we can deduce that sin ( 12 x ) = 3 sin ( 4 x ) 4 sin 3 ( 4 x ) \sin(12x) = 3 \sin(4x) - 4 \sin^3(4x) , or, sin 3 ( 4 x ) = 3 sin ( 4 x ) sin ( 12 x ) 4 \sin^3(4x) = \frac{3 \sin(4x) - \sin(12x)}{4}

I = 3 4 0 e 5 x sin ( 4 x ) x d x 1 4 0 e 5 x sin ( 12 x ) x d x \large \displaystyle I = \frac34 \int_0^{\infty} \frac{ e^{-5x} \sin(4x)}{x} dx - \frac14 \int_0^{\infty} \frac{ e^{-5x} \sin(12x)}{x} dx

From the Maclaurin series of the sine:

I = 3 4 0 e 5 x x n = 0 ( 1 ) n ( 4 x ) 2 n + 1 ( 2 n + 1 ) ! d x 1 4 0 e 5 x x n = 0 ( 1 ) n ( 12 x ) 2 n + 1 ( 2 n + 1 ) ! d x \large \displaystyle I = \frac34 \int_0^{\infty} \frac{ e^{-5x}}{x} \sum_{n=0}^{\infty} \frac{(-1)^n (4x)^{2n+1}}{(2n+1)!} dx - \frac14 \int_0^{\infty} \frac{ e^{-5x} }{x} \sum_{n=0}^{\infty} \frac{(-1)^n (12x)^{2n+1}}{(2n+1)!} dx

I = 3 4 n = 0 ( 1 ) n 4 2 n + 1 ( 2 n + 1 ) ! 0 e 5 x x 2 n d x 1 4 n = 0 ( 1 ) n 1 2 2 n + 1 ( 2 n + 1 ) ! 0 e 5 x x 2 n d x \large \displaystyle I = \frac34 \sum_{n=0}^{\infty} \frac{ (-1)^n 4^{2n+1} }{(2n+1)!} \int_0^{\infty} \ e^{-5x} x^{2n} dx - \frac14 \sum_{n=0}^{\infty} \frac{ (-1)^n 12^{2n+1} }{(2n+1)!} \int_0^{\infty} e^{-5x} x^{2n} dx

On both integrals, make x = t 5 x = \frac{t}{5} , d x = d t 5 dx = \frac{dt}{5} :

I = 3 4 n = 0 ( 1 ) n ( 2 n + 1 ) ! ( 4 5 ) 2 n + 1 0 e t t 2 n d t 1 4 n = 0 ( 1 ) n ( 2 n + 1 ) ! ( 12 5 ) 2 n + 1 0 e t t 2 n d t \large \displaystyle I = \frac34 \sum_{n=0}^{\infty} \frac{ (-1)^n }{(2n+1)!} \left (\frac{4}{5} \right )^{2n+1} \int_0^{\infty} \ e^{-t} t^{2n} dt - \frac14 \sum_{n=0}^{\infty} \frac{ (-1)^n }{(2n+1)!} \left (\frac{12}{5} \right )^{2n+1} \int_0^{\infty} e^{-t} t^{2n} dt

Both integrals will be equal to Γ ( 2 n + 1 ) = ( 2 n ) ! \Gamma(2n+1) = (2n)! ( Γ ( z ) \Gamma(z) is the Gamma Function ). Also, since ( 2 n + 1 ) ! = ( 2 n ) ! ( 2 n + 1 ) (2n+1)! = (2n)! \cdot (2n+1) , one has:

I = 3 4 n = 0 ( 1 ) n ( 2 n + 1 ) ( 4 5 ) 2 n + 1 1 4 n = 0 ( 1 ) n ( 2 n + 1 ) ( 12 5 ) 2 n + 1 \large \displaystyle I = \frac34 \sum_{n=0}^{\infty} \frac{ (-1)^n }{(2n+1)} \left (\frac{4}{5} \right )^{2n+1}- \frac14 \sum_{n=0}^{\infty} \frac{ (-1)^n }{(2n+1)} \left (\frac{12}{5} \right )^{2n+1}

From the Maclaurin series of the arc-tangent:

I = 3 4 arctan ( 4 5 ) 1 4 arctan ( 12 5 ) \large \displaystyle I = \frac34 \arctan \left ( \frac{4}{5} \right ) - \frac14 \arctan \left ( \frac{12}{5} \right )

Since arctan ( x ) = π 2 arctan ( 1 x ) \arctan(x) = \frac{\pi}{2} - \arctan \left ( \frac{1}{x} \right )

I = 3 4 [ π 2 arctan ( 5 4 ) ] 1 4 [ π 2 arctan ( 5 12 ) ] \large \displaystyle I = \frac34 \left [ \frac{\pi}{2} - \arctan \left ( \frac{5}{4} \right ) \right ] - \frac14 \left [ \frac{\pi}{2} - \arctan \left ( \frac{5}{12} \right ) \right]

I = π 4 3 4 arctan ( 5 4 ) + 1 4 arctan ( 5 12 ) \color{#20A900} \boxed{ \large \displaystyle I = \frac{\pi}{4} - \frac34 \arctan \left ( \frac{5}{4} \right ) + \frac14 \arctan \left ( \frac{5}{12} \right ) }

So:

a = 1 , b = 4 , c = 3 , d = 5 a + b + c + d = 13 \color{#3D99F6} \large \displaystyle a =1, b = 4, c = 3, d = 5 \rightarrow \boxed{ \large \displaystyle a+b+c+d = 13}

Very nice. Thanks for the solution.

Karan Chatrath - 1 year, 2 months ago

Log in to reply

You're welcome!

Guilherme Niedu - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...