Definite Integration Test

Calculus Level 4

0 5 2 60 ( 1 + 4 x 2 ) 25 20 x 2 d x = π a b \int_0^{\frac{\sqrt{5}}{2}} \frac{60}{(1+4x^2)\sqrt{25-20x^2}} dx = \pi \sqrt {\frac ab}

The equation above holds true for square-free positive coprime integers a a and b b . Enter your answer as a b ab .

Note: I came across the integral above while solving a very interesting mechanics problem.


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 13, 2019

I = 0 5 2 60 ( 1 + 4 x 2 ) 25 20 x 2 d x Let sin θ = 2 x 5 cos θ d θ = 2 5 d x = 0 π 2 6 5 cos θ ( 1 + 5 sin 2 θ ) 1 sin 2 θ d θ = 0 π 2 6 5 1 + 5 sin 2 θ d θ Since cos 2 θ = 1 2 sin 2 θ = 0 π 2 12 5 7 5 cos 2 θ d θ Let t = tan θ d t = sec 2 θ d θ = 0 12 5 7 5 ( 1 t 2 1 + t 2 ) × d t 1 + t 2 = 0 6 5 1 + 6 t 2 d t Let 6 t = tan ϕ 6 d t = sec 2 ϕ d ϕ = 30 0 π 2 sec 2 ϕ 1 + tan 2 ϕ d ϕ = 30 0 π 2 d ϕ = 30 ϕ 0 π 2 = π 15 2 \begin{aligned} I & = \int_0^{\frac {\sqrt 5}2} \frac {60}{(1+4x^2)\sqrt{25-20x^2}}\ dx & \small \color{#3D99F6} \text{Let }\sin \theta = \frac {2x}{\sqrt 5} \implies \cos \theta \ d \theta = \frac 2{\sqrt 5} \ dx \\ & = \int_0^\frac \pi 2 \frac {6\sqrt 5 \cos \theta}{(1+5\sin^2 \theta)\sqrt{1-\sin^2 \theta}}\ d\theta \\ & = \int_0^\frac \pi 2 \frac {6\sqrt 5}{1+5\sin^2 \theta}\ d\theta & \small \color{#3D99F6} \text{Since }\cos 2\theta = 1-2\sin^2 \theta \\ & = \int_0^\frac \pi 2 \frac {12\sqrt 5}{7-5\cos 2\theta}\ d\theta & \small \color{#3D99F6} \text{Let }t = \tan \theta \implies dt = \sec^2 \theta \ d \theta \\ & = \int_0^\infty \frac {12\sqrt 5}{7-5 \left(\frac {1-t^2}{1+t^2}\right)}\times \frac {dt}{1+t^2} \\ & = \int_0^\infty \frac {6\sqrt 5}{1+6t^2} \ dt & \small \color{#3D99F6} \text{Let }\sqrt 6 t = \tan \phi \implies \sqrt 6 dt = \sec^2 \phi \ d \phi \\ & = \sqrt {30} \int_0^\frac \pi 2 \frac {\sec^2 \phi}{1+\tan^2 \phi} \ d \phi \\ & = \sqrt {30} \int_0^\frac \pi 2 \ d \phi \\ & = \sqrt {30} \phi \ \bigg|_0^\frac \pi 2 = \pi \sqrt{\frac {15}2} \end{aligned}

Therefore, a b = 15 × 2 = 30 ab = 15\times 2 = \boxed {30} .

Thank you for the solution! I just noticed an insignificant typo in the second line of the solution. It should be sin ( θ ) \sin(\theta) instead of sin ( x ) \sin(x) . Also, I really like the format in which you have documented your solution. If it is not too much trouble, would you mind sharing the latex code of the solution? If not share, some tips on how to document would be great. I am still in the process of learning and I will find your insights helpful.

Karan Chatrath - 2 years, 1 month ago

Log in to reply

Thanks for spotting the typo. Hope the following help.

Chew-Seong Cheong - 2 years, 1 month ago

Thank you very much!

Karan Chatrath - 2 years, 1 month ago

0 5 2 60 ( 4 x 2 + 1 ) 25 20 x 2 d x 30 tan 1 ( 2 6 x 5 4 x 2 ) \int_0^{\frac{\sqrt{5}}{2}} \frac{60}{\left(4 x^2+1\right) \sqrt{25-20 x^2}} \, dx \Rightarrow \sqrt{30} \tan ^{-1}\left(\frac{2 \sqrt{6} x}{\sqrt{5-4 x^2}}\right) x = 0 x = 5 2 \large|_{x=0}^{x=\frac{\sqrt{5}}{2}}

30 tan 1 ( 2 6 x 5 4 x 2 ) x = 0 0 \sqrt{30} \tan ^{-1}\left(\frac{2 \sqrt{6} x}{\sqrt{5-4 x^2}}\right)|{x=0}\Rightarrow 0

lim x ( 5 2 ) 30 tan 1 ( 2 6 x 5 4 x 2 ) = 15 2 π \underset{x\to \left(\frac{\sqrt{5}}{2}\right)^-}{\text{lim}}\sqrt{30} \tan ^{-1}\left(\frac{2 \sqrt{6} x}{\sqrt{5-4 x^2}}\right)= \sqrt{\frac{15}{2}} \pi

The limit has to be taken from below as the expression can not be evaluated from above in R \mathbb{R} and taking the limit from this direction is sufficient.

Taking the limit is necessary to the evaluation as the direct substitution is indeterminate.

Alex Burgess
May 2, 2019

I = 60 5 0 5 2 d x 1 + 4 x 2 5 4 x 2 I = \frac{60}{\sqrt{5}} \int \limits_0^{\frac{\sqrt{5}}{2}} \! \frac{\mathrm{d}x}{1+4x^2 \sqrt{5-4x^2} } . Let x = 5 2 y x = \frac{\sqrt{5}}{2}y ,

= 6 5 0 1 d y 1 + 5 y 2 1 y 2 = 6\sqrt{5} \int \limits_0^1 \! \frac{\mathrm{d}y}{1+5y^2 \sqrt{1-y^2} } . Let y = sin θ y = \sin{\theta} ,

= 6 5 0 π 2 d θ 1 + 5 sin 2 θ = 0 π 2 d θ cos 2 θ + 6 sin 2 θ = 0 π 2 sec 2 θ d θ 1 + 6 tan 2 θ = 6\sqrt{5} \int \limits_0^\frac{\pi}{2} \! \frac{\mathrm{d}\theta}{1+5\sin^2{\theta}} = \int \limits_0^\frac{\pi}{2} \! \frac{\mathrm{d}\theta}{\cos^2{\theta}+6\sin^2{\theta}} = \int \limits_0^\frac{\pi}{2} \! \frac{\sec^2{\theta} \, \mathrm{d}\theta}{1+6\tan^2{\theta}} . Let ϕ = 6 tan θ \phi = \sqrt{6}\tan{\theta} .

= 30 0 d ϕ 1 + ϕ 2 = \sqrt{30} \int \limits_0^\infty \! \frac{\mathrm{d}\phi}{1+\phi^2} . Let ϕ = tan ζ \phi = \tan{\zeta} .

= 30 0 π 2 d ζ = 15 2 π = \sqrt{30} \int \limits_0^\frac{\pi}{2} \mathrm{d}\zeta = \sqrt{\frac{15}{2} } \pi .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...