∫ 0 2 1 + x 2 ln ( 1 + 2 x ) d x = arctan a ⋅ ln b
The equation above holds true for natural numbers a and b . Find a 4 + b 4 .
Inspiration: IIT-JEE
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Elaboration on @Hrithik Thakur's solution.
I ( p ) ∂ p ∂ I ( p ) ⟹ I ( p ) I ( 2 ) = ∫ 0 2 1 + x 2 ln ( 1 + p x ) d x = ∫ 0 2 ( 1 + p x ) ( 1 + x 2 ) x d x = p 2 + 1 1 ∫ 0 2 ( x 2 + 1 x + p − p x + 1 p ) d x = p 2 + 1 1 [ 2 ln ( x 2 + 1 ) + p tan − 1 x − ln ( p x + 1 ) ] 0 2 = p 2 + 1 ln 5 + p tan − 1 2 − ln ( 2 p + 1 ) = ∫ p 2 + 1 ln 5 + p tan − 1 2 − ln ( 2 p + 1 ) d p = ln 5 tan − 1 p + ln p 2 + 1 tan − 1 2 − ∫ p 2 + 1 ln ( 2 p + 1 ) d p + C = ln 5 tan − 1 p + ln p 2 + 1 tan − 1 2 − ∫ p 2 + 1 ln ( 2 p + 1 ) d p = ln 5 tan − 1 2 + ln 5 tan − 1 2 − I ( 2 ) = tan − 1 2 ln 5 where C is the constant of integration. Since I ( 0 ) = 0 ⟹ C = 0
Therefore a 4 + b 4 = 2 4 + 5 4 = 6 4 1 .
Hint: generalize the given integrand as ∫ 0 2 1 + x 2 ln ( 1 + p x ) d x then use differentiation under integration.
You are missing the d x for the integral also use a backslash for all functions in LaTex \ln ln . Function should not be in italic. Need not put text in LaTex. It is difficult and not a standard in Brilliant.org.
Log in to reply
Sir, thanks a lot, for your valuable advice... I would keep those points in mind from now onwards.
Here's a more general form :-
∫ 0 p 1 + x 2 l n ( 1 + p x ) d x = I
Let x = t a n ( t )
so the integral transforms to:-
∫ 0 a r c t a n ( p ) l n ( 1 + p t a n ( t ) ) d t = ∫ 0 a r c t a n ( p ) l n ( 1 + p t a n ( a r c t a n ( p ) − t ) ) d t
= ∫ 0 a r c t a n ( p ) l n ( 1 + p 1 + p t a n ( t ) ( p − t a n ( t ) ) ) d t
= ∫ 0 a r c t a n ( p ) l n ( 1 + p t a n ( t ) 1 + p 2 ) d t
So 2 I = ∫ 0 a r c t a n ( p ) l n ( 1 + p 2 ) d t
2 I = a r c t a n ( p ) l n ( 1 + p 2 )
I = a r c t a n ( p ) l n ( 1 + p 2 )
Plug in p = 2 to get the answer .
Problem Loading...
Note Loading...
Set Loading...
An alternative solution to Mr @Hrithik Thakur:
I = ∫ 0 2 1 + x 2 ln ( 1 + 2 x ) d x
Let x = tan ( θ ) . Also d x = sec 2 ( θ ) d θ → d θ = 1 + x 2 d x and the limits of integration will be 0 and arctan ( 2 ) . Let us call ϕ = arctan ( 2 ) :
I = ∫ 0 ϕ ln ( 1 + 2 tan ( θ ) ) d θ
I = ∫ 0 ϕ ln ( cos ( θ ) cos ( θ ) + 2 sin ( θ ) ) ) d θ
I = ∫ 0 ϕ ln ( cos ( θ ) + 2 sin ( θ ) ) d θ − ∫ 0 ϕ ln ( cos ( θ ) ) d θ
Inside the ln of the first integral, we can multiply above and below by 5 :
I = ∫ 0 ϕ ln [ 5 ( 5 cos ( θ ) + 2 5 sin ( θ ) ) ] d θ − ∫ 0 ϕ ln ( cos ( θ ) ) d θ
Notice that if ϕ = arctan ( 2 ) , cos ( ϕ ) = 5 1 and sin ( ϕ ) = 5 2 :
I = ∫ 0 ϕ ln [ 5 ( cos ( θ ) cos ( ϕ ) + sin ( θ ) sin ( ϕ ) ) ] d θ − ∫ 0 ϕ ln ( cos ( θ ) ) d θ
I = ∫ 0 ϕ ln ( 5 ) d θ + ∫ 0 ϕ ln ( cos ( θ − ϕ ) ) d θ − ∫ 0 ϕ ln ( cos ( θ ) ) d θ
In the second integral make u = ϕ − θ . Then d u = − d θ :
I = ∫ 0 ϕ ln ( 5 ) d θ + ∫ ϕ 0 − ln ( cos ( − u ) ) d u − ∫ 0 ϕ ln ( cos ( θ ) ) d θ
Since cosine is even:
I = ∫ 0 ϕ ln ( 5 ) d θ + ∫ 0 ϕ ln ( cos ( u ) ) d u − ∫ 0 ϕ ln ( cos ( θ ) ) d θ
The second and the third integral cancel out and:
I = ∫ 0 ϕ ln ( 5 ) d θ
I = ln ( 5 ) arctan ( 2 )
Thus:
a = 2 , b = 5 , a 4 + b 4 = 6 4 1