Definitely tougher than previous one

Geometry Level 5

n = 1 K sin ( n θ ) 2 n = a K + 1 sin ( θ ) + sin ( K θ ) a sin ( ( K + 1 ) θ ) 2 K ( b c cos ( θ ) ) \sum_{n = 1}^{K} \frac {\sin (n \theta)} { 2^n}\,=\,\dfrac{a^{K+1}\cdot \sin(\theta)\,+\,\sin(K \theta)\,-\,a \cdot \sin((K+1)\theta)}{2^{K}(b-c \cdot \cos(\theta))}

The equation above holds true for constants a , b , c a,b,c and θ \theta . Find the value of a + b + c a+b+c .


Inspiration .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Sky
Mar 26, 2016

Say S = n = 1 K sin ( n θ ) 2 n S= \sum_{n=1}^{K}\frac{\sin(n\theta)}{2^{n}} . Now define C = n = 1 K cos ( n θ ) 2 n C= \sum_{n=1}^{K}\frac{\cos(n\theta)}{2^{n}} .

Evaluating C + i S C\,+\,i \cdot S , C + i S = n = 1 K ( cos ( n θ ) 2 n + i sin ( n θ ) 2 n ) = n = 1 K ( c i s ( θ ) 2 ) n C\,+\,i S\,=\,\ \large \sum_{n=1}^{K} \left( \frac{\cos(n\theta)}{2^{n}}\,+\, i \cdot \frac{\sin(n\theta)}{2^{n}} \right) \,=\, \large \sum_{n=1}^{K} \left( \frac{cis(\theta)}{2} \right)^{n} C + i S = c i s K + 1 ( θ ) c i s ( θ ) 2 K z 2 K 2 K + 1 \implies C\,+\,i S\,=\, \frac{cis^{K+1}(\theta)\,-\,cis(\theta) \cdot 2^{K}}{z \cdot 2^{K}\,-\,2^{K+1}} After simplification this gives, C + i S = cos ( K θ ) 2 cos ( ( K + 1 ) θ ) 2 K + 2 K + 1 cos ( θ ) 2 K ( 5 4 cos ( θ ) ) + i 2 K + 1 sin ( θ ) + sin ( K θ ) 2 sin ( ( K + 1 ) θ ) 2 K ( 5 4 cos ( θ ) ) C\,+\,i S\,=\, \frac{\cos(K\theta)\,-\,2 \cdot \cos((K+1)\theta)\,-\,2^{K}\,+\,2^{K+1}\cos(\theta)}{2^{K}(5\,-\,4 \cdot \cos(\theta))}\,+\, i \cdot \frac{2^{K+1} \cdot \sin(\theta)\,+\, \sin(K\theta)\,-\,2 \cdot \sin((K+1)\theta)}{2^{K}(5\,-\,4 \cdot \cos(\theta))} On equatting the imaginary part, we get :- S = n = 1 K sin ( n θ ) 2 n = 2 K + 1 sin ( θ ) + sin ( K θ ) 2 sin ( ( K + 1 ) θ ) 2 K ( 5 4 cos ( θ ) ) \color{#3D99F6}{ S\,=\, \large \sum_{n=1}^{K} \frac{\sin(n\theta)}{2^{n}}\,=\, \frac{2^{K+1} \cdot \sin(\theta) \,+\, \sin(K\theta) \,-\,2 \cdot \sin((K+1)\theta)}{2^{K}(5\,-\,4 \cdot \cos(\theta))} } Furthermore, it can also be seen that :- C = n = 1 K cos ( n θ ) 2 n = cos ( K θ ) 2 cos ( ( K + 1 ) θ ) 2 K + 2 K + 1 cos ( θ ) 2 K ( 5 4 cos ( θ ) ) \color{#D61F06}{C\,=\, \large \sum_{n=1}^{K} \frac{\cos(n\theta)}{2^{n}}\,=\, \frac{\cos(K\theta)\,-\,2 \cdot \cos((K+1)\theta)\,-\,2^{K}\,+\,2^{K+1}\cos(\theta)}{2^{K}(5\,-\,4 \cdot \cos(\theta))} }

Very useful formulae.

Manish Maharaj - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...