Deflection?

A twisted steel clothesline wire of length l l has cross-sectional area A A and modulus of elasticity in tension E E . The wire is stretched horizontally between two fixed points A A and B B , but without appreciable initial tension. A load P P is then suspended from the mid-point C C of the line. The vertical deflection of the point C C can be expressed as δ = l m P A E n \displaystyle\delta\,=\,\frac{l}{m}\sqrt[n]{\frac{P}{AE}} where m m and n n are co-prime. Find m + n m+n .

DETAILS AND ASSUMPTIONS: \textbf{DETAILS AND ASSUMPTIONS:}

\bullet The deflection is small compared to the length l l of the clothesline.

\bullet This problem has been taken directly from a book.

\bullet A clear solution would be greatly appreciated(as I can't solve it).

\bullet This is my first problem.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ronak Agarwal
Jul 5, 2014

Solution Solution

F i r s t n o t e t h a t A C = C B = l / 2 w h e r e l i s t h e t o t a l l e n g t h o f t h e w i r e . B y o b s e r v i n g t h e F B D o n t h e l o a d a n d w r i t i n g e q u a t i o n f o r e q u i l i b r i u m w e g e t : 2 F s i n ( θ ) = P ( i ) N o w A D = l s e c ( θ ) / 2 E l o n g a t i o n = Δ l = A D A C = l / 2 ( s e c ( θ ) 1 ) ( i i ) N o w w r i t i n g t h e e q u a t i o n S t r e s s S t r a i n = M o d u l u s o f e l a s t i c i t y w e g e t F / A Δ l / ( l / 2 ) = E h e n c e F = 2 Δ l E A l . P u t t i n g t h e v a l u e o f Δ l w e g e t F = E A ( s e c ( θ ) 1 ) = E A ( 1 c o s ( θ ) c o s ( θ ) ) = 2 E A s i n 2 ( θ / 2 ) c o s ( θ ) ( i i i ) H e r e c o m e s t h e t r i c k s i n c e θ 0 w e c a n w r i t e s i n ( θ ) θ a n d c o s ( θ ) 1 a n d t a n ( θ ) θ s o e q u a t i o n ( i i i ) b e c o m e s F = E A θ 2 / 2 p u t t i n g v a l u e o f F i n e q . ( 1 ) w e g e t P = ( 2 θ ) ( E A θ 2 / 2 ) = E A θ 3 S o l v i n g θ = P E A 3 ( i v ) N o w o u r v e r t i c a l e l o n g a t i o n δ = l t a n ( θ ) / 2 l θ / 2 U s i n g e q u a t i o n ( i v ) w e g e t δ = l 2 P E A 3 S o m = 2 , n = 3 h e n c e m + n = 5 First\quad note\quad that\quad AC=CB=l/2\quad where\quad l\quad is\quad the\quad total\quad length\\ of\quad the\quad wire.\quad By\quad observing\quad the\quad FBD\quad on\quad the\quad load\quad and\quad \\ writing\quad equation\quad for\quad equilibrium\quad we\quad get:\\ 2Fsin(\theta )=P\quad \quad \quad (i)\\ Now\quad AD=lsec(\theta )/2\quad \\ \Rightarrow Elongation=\Delta l=AD-AC=l/2(sec(\theta )-1)\quad (ii)\\ Now\quad writing\quad the\quad equation\quad \\ \frac { Stress }{ Strain } =Modulus\quad of\quad elasticity\\ we\quad get\quad \frac { F/A }{ \Delta l/(l/2) } =E\quad hence\quad F=\frac { 2\Delta lEA }{ l } .\\ Putting\quad the\quad value\quad of\quad \\ \Delta l\quad we\quad get\quad F=EA(sec(\theta )-1)=EA(\frac { 1-cos(\theta ) }{ cos(\theta ) } )=\frac { 2EA{ sin }^{ 2 }(\theta /2) }{ cos(\theta ) } \quad (iii)\\ Here\quad comes\quad the\quad trick\quad since\quad \theta \approx 0\quad we\quad can\quad write\\ sin(\theta )\approx \theta \quad and\quad cos(\theta )\approx 1\quad and\quad tan(\theta )\approx \theta \quad so\\ equation\quad (iii)\quad becomes\\ \\ F=EA{ \theta }^{ 2 }/2\quad putting\quad value\quad of\quad F\quad in\quad eq.\quad (1)\quad we\quad get\\ \\ P=(2\theta )(EA{ \theta }^{ 2 }/2)=EA{ \theta }^{ 3 }\quad \quad \\ Solving\quad \theta =\sqrt [ 3 ]{ \frac { P }{ EA } } \quad \quad (iv)\\ Now\quad our\quad vertical\quad elongation\quad \delta =ltan(\theta )/2\approx l\theta /2\quad \\ Using\quad equation\quad (iv)\quad we\quad get\quad \delta =\frac { l }{ 2 } \sqrt [ 3 ]{ \frac { P }{ EA } } \quad \\ So\quad m=2,n=3\quad hence\quad m+n=5\\ \\ \\ \\ \\ \\

Thanks for the solution.

Nishant Sharma - 6 years, 11 months ago
Anish Puthuraya
Jul 5, 2014

alt text alt text

For equilibrium,
2 T sin θ = P 2T\sin\theta = P

Using given condition, sin θ θ tan θ \displaystyle \sin\theta \approx \theta \approx \tan\theta

2 T tan θ = P 2T\tan\theta = P

2 T x l 2 = P 2T\frac{x}{\frac{l}{2}} = P

4 T x l = P \frac{4Tx}{l} = P

Now, let us find the extension in the wire.

Δ l = 2 ( l 2 ) 2 + x 2 l \Delta l = 2\sqrt{\left(\frac{l}{2}\right)^2 + x^2} - l

Using Binomial expansion and simplifying the result,

Δ l = 2 x 2 l \Delta l = \frac{2x^2}{l}

Using the definition of Young's Modulus,

E = Stress Strain = T A Δ l l E = \frac{\text{Stress}}{\text{Strain}} = \frac{\frac{T}{A}}{\frac{\Delta l}{l}}

E = P l 3 8 A x 3 E = \frac{Pl^3}{8Ax^3}

Thus,

x = l 2 ( P A E ) 1 3 x = \frac{l}{2} \left(\frac{P}{AE}\right)^{\frac{1}{3}}

Hence,

m + n = 5 \boxed{m+n = 5}

Ok. So finally a(two) good solution(s) have come up. Great!!!

Congrats for META in IIT-B. Enjoy.... :)

Nishant Sharma - 6 years, 11 months ago

Log in to reply

Thank You. What did you get?

Anish Puthuraya - 6 years, 11 months ago

Log in to reply

Hey I am currently pursuing B.E. in ME from JU.

Nishant Sharma - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...