Okay here is a second attempt for the dancers problem:
On a stage there are three groups of dancers, holding hands like this:
Now, they intend to stand in a queue where everyone in each group stands in a row, like this:
A dancer is happy if not more than one of the partners with whom he or she was holding hands is standing behind him in the queue.
Which group of dancers could possibly form a queue such that everyone in the group is happy?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Red only have two people in them. So there can only be one other than theirselves behind each other in the queue