Degrees of Definite Integral

Calculus Level 5

I = 0 π x 3 ln sin x d x k = 0 π x 2 ln ( 2 sin x ) d x \large I= \int_0^\pi x^3\ln\sin x\, dx\\\large k = \int_0^\pi x^2\ln\left(\sqrt2\sin x\right)\,dx

Let the two integrals be defined as given above. If I I can be written as I = A π B C k I = \dfrac{A\pi^B}C k , where A A , B B and C C are positive integers with A A and C C being coprime integers. Find A + B + C A+B+C .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kishore S. Shenoy
May 26, 2016

Relevant wiki: Definite Integrals

Let I = 0 π x 3 ln sin x d x I = \large \int_0^\pi x^3\ln\sin x\, dx

Using properties of Definite Integrals, 0 a f ( x ) d x = 0 a f ( a x ) d x \displaystyle\int_0^a f(x)\, dx = \int_0^a f(a-x)\,dx I = 0 π ( π x ) 3 ln sin x d x = 0 π ( π 3 3 π 2 x + 3 π x 2 x 3 ) ln sin x d x = 0 π π 3 ln sin x d x + 0 π 3 π 2 x ln sin x d x + 0 π 3 π x 2 ln sin x d x + 0 π x 3 ln sin x d x = I 1 + I 2 + I 3 + I 4 \begin{aligned}I &= \int_0^\pi \left(\pi-x\right)^3 \ln\sin x\, dx \\ &= \int_0^\pi\left(\pi^3-3\pi^2x+3\pi x^2-x^3\right)\ln\sin x\, dx\\ &=\int_0^\pi \pi^3\ln\sin x\, dx + \int_0^\pi -3\pi^2x\ln\sin x\, dx+\int_0^\pi 3\pi x^2\ln\sin x\, dx +\int_0^\pi -x^3\ln\sin x\, dx\\ &=I_1 + I_2 + I_3+I_4\end{aligned}

Now, I 1 = π 3 0 π ln sin x d x \displaystyle I_1 = \pi^3 \int_0^\pi \ln\sin x\, dx , which is a standard integral 0 π ln sin x d x = 2 0 π / 2 ln sin x d x = π ln 2 \int_0^\pi \ln\sin x\, dx = 2\int_0^{\pi/2} \ln\sin x\, dx = -\pi\ln 2

So, I 1 = π 4 ln 2 I_1 = -\pi^4 \ln 2

Taking I 2 I_2 , using a formula I that I proved in my previous question , 0 π x f ( sin x ) d x = π 2 0 π f ( sin x ) d x I 2 = 3 π 2 0 π x ln sin x d x = 3 π 3 2 0 π ln sin x d x = 3 π 4 2 ln 2 \int_0^\pi x f(\sin x)\, dx = \dfrac\pi2 \int_0^{\pi} f(\sin x)\, dx\\\begin{aligned}\Rightarrow I_2 &= -3\pi^2 \int_0^\pi x\ln\sin x \, dx \\ &= -\dfrac {3\pi^3}2 \int_0^\pi \ln \sin x\, dx\\ &= \dfrac{3\pi^4}2\ln 2\end{aligned}

For I 3 I_3 , we use ln a b = ln a + ln b \ln ab = \ln a+\ln b , ln sin x = ln ( 2 sin x ) 1 2 ln 2 \ln \sin x = \ln\left(\sqrt{2}\sin x\right) - \dfrac 12 \ln 2 I 3 = 3 π 0 π x 2 ln sin x d x = 3 π 0 π x 2 ( ln ( 2 sin x ) 1 2 ln 2 ) d x = 3 π k 3 π 2 0 π ln 2 d x = 3 π k π 4 2 ln 2 \begin{aligned}I_3 &= 3\pi\int_0^\pi x^2\ln \sin x\, dx\\ &= 3\pi\int_0^\pi x^2\left(\ln\left(\sqrt{2}\sin x\right) - \dfrac 12 \ln 2\right)\, dx\\ &=3\pi k - \dfrac{3\pi}2\int_0^\pi \ln2\, dx\\ &=3\pi k-\dfrac{\pi^4}2 \ln 2\end{aligned}

Now, simple I 4 = I I_4 = -I

Hence, I = π 4 ln 2 + 3 2 π 4 ln 2 + 3 π k 1 2 π 4 ln 2 I 2 I = π 4 ln 2 ( 1 + 3 2 1 2 ) + 3 π k I = 3 π 2 k \begin{aligned}I& = -\pi^4 \ln 2+ \dfrac32\pi^4\ln 2+3\pi k-\dfrac12\pi^4\ln2 - I\\ \Rightarrow 2I &= \pi^4\ln 2\left(-1+\dfrac 32-\dfrac 12\right) + 3\pi k\\ \large I &= \large \boxed{\dfrac{3\pi}2 k}\end{aligned}

Moderator note:

Be careful with your notation. IE In the question you already introduced I 1 I_1 , but in your solution, you redefine it to I I and then introduce another I 1 I_1 term. That can be confusing to someone glancing through the solution.

The solution would be slightly better presented as using a reduction formula to calculate x n ln sin x \int x^n \ln \sin x to build out I 1 , I 2 , I 3 , I 4 I _1, I_2, I_3, I_4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...