∫ − ∞ ∞ e − x 2 δ ( x 2 − 2 ) d x = C D F A e − B
The equation above holds true for positive integers A , B , C , D and F , find the minimum value of A + B + C + D + F + 2 .
Notation : δ ( ⋅ ) denotes the Dirac delta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Hi @Mark Hennings , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.
Change of variables approach:
First, to avoid minor complications later, use the symmetry property of the integrand (i.e. f ( − x ) = f ( x ) ) to rewrite the integral as ∫ − ∞ ∞ e − x 2 δ ( x 2 − 2 ) d x = 2 ∫ 0 ∞ e − x 2 δ ( x 2 − 2 ) d x
Now, apply a change of variables. y ≡ x 2 ⇒ d y = 2 x d x o r 2 y d y = d x
Simple substitution gives 2 ∫ 0 ∞ e − x 2 δ ( x 2 − 2 ) d x = ∫ 0 ∞ y 1 e − y δ ( y − 2 ) d y
Finally, using the basic properties of the delta function, we can directly obtain ∫ 0 ∞ y 1 e − y δ ( y − 2 ) d y = 2 e − 2
giving A = 1 , B = 2 , C = 1 , D = 2 , and F = 2 for a result of 1 0 .
Woahhh this is nice!!!
Why can not we consider D=1 ??? If C^D=1=1^1. So C=1 and D=1 ... Then the solution will be 1+2+1+1+2+2=9...Is here any thing wrong in my solution ..
Log in to reply
Your values of A , B , C , D , E , F would not yield e − 2 / 2 .
Problem Loading...
Note Loading...
Set Loading...
With δ ( x 2 − 2 ) = 2 2 1 [ δ ( x − 2 ) + δ ( x + 2 ) ] so that ∫ R f ( x ) δ ( x 2 − 2 ) d x = 2 2 1 [ f ( 2 ) + f ( − 2 ) ] we see that ∫ R e − x 2 δ ( x 2 − 2 ) d x = 2 e − 2 making the answer 1 + 2 + 1 + 2 + 2 + 2 = 1 0 .