Delta function!

Calculus Level 5

e x 2 δ ( x 2 2 ) d x = A e B C F D \large \displaystyle\int _{ -\infty }^{ \infty }{ { e }^{ -{ x }^{ 2 } }\delta ({ x }^{ 2 }-2)\quad \, dx } =\dfrac { A{ e }^{ -B } }{ C\sqrt [ D ]{ F } }

The equation above holds true for positive integers A , B , C , D A,B,C,D and F F , find the minimum value of A + B + C + D + F + 2 A+B+C+D+F+2 .

Notation : δ ( ) \delta(\cdot) denotes the Dirac delta function .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Feb 27, 2016

With δ ( x 2 2 ) = 1 2 2 [ δ ( x 2 ) + δ ( x + 2 ) ] \delta(x^2 - 2) \; = \; \tfrac{1}{2\sqrt{2}}\big[\delta(x-\sqrt{2}) + \delta(x + \sqrt{2})\big] so that R f ( x ) δ ( x 2 2 ) d x = 1 2 2 [ f ( 2 ) + f ( 2 ) ] \int_\mathbf{R} f(x) \delta(x^2 - 2)\,dx \; = \; \tfrac{1}{2\sqrt{2}}\big[f(\sqrt{2}) + f(-\sqrt{2})\big] we see that R e x 2 δ ( x 2 2 ) d x = e 2 2 \int_\mathbb{R} e^{-x^2}\delta(x^2-2)\,dx \; = \; \frac{e^{-2}}{\sqrt{2}} making the answer 1 + 2 + 1 + 2 + 2 + 2 = 10 1 + 2 + 1 + 2 + 2 +2= \boxed{10} .

Hi @Mark Hennings , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.

Brilliant Mathematics Staff - 5 years, 3 months ago
Hod Greeley
Mar 13, 2016

Change of variables approach:

First, to avoid minor complications later, use the symmetry property of the integrand (i.e. f ( x ) = f ( x ) f(-x) = f(x) ) to rewrite the integral as e x 2 δ ( x 2 2 ) d x = 2 0 e x 2 δ ( x 2 2 ) d x \displaystyle\int_{-\infty}^{\infty} \! e^{-x^2} \delta(x^2 - 2) \, \, \mathrm{d}x = 2 \displaystyle\int_{0}^{\infty} \! e^{-x^2} \delta(x^2 - 2) \, \, \mathrm{d}x

Now, apply a change of variables. y x 2 d y = 2 x d x o r d y 2 y = d x y \equiv x^2 \Rightarrow \mathrm{d}y = 2x \, \mathrm{d}x \, \, \mathrm{or} \, \, \frac{\mathrm{d}y}{2\sqrt{y}} = \mathrm{d}x

Simple substitution gives 2 0 e x 2 δ ( x 2 2 ) d x = 0 1 y e y δ ( y 2 ) d y 2 \displaystyle\int_{0}^{\infty} \! e^{-x^2} \delta(x^2 - 2) \, \, \mathrm{d}x = \displaystyle\int_{0}^{\infty} \! \tfrac{1}{\sqrt{y}}e^{-y} \delta(y - 2) \, \, \mathrm{d}y

Finally, using the basic properties of the delta function, we can directly obtain 0 1 y e y δ ( y 2 ) d y = e 2 2 \displaystyle\int_{0}^{\infty} \! \tfrac{1}{\sqrt{y}}e^{-y} \delta(y - 2) \, \, \mathrm{d}y= \frac{e^{-2}}{\sqrt{2}}

giving A = 1 A = 1 , B = 2 B = 2 , C = 1 C = 1 , D = 2 D = 2 , and F = 2 F = 2 for a result of 10 \boxed{10} .

Woahhh this is nice!!!

Pi Han Goh - 5 years, 2 months ago

Why can not we consider D=1 ??? If C^D=1=1^1. So C=1 and D=1 ... Then the solution will be 1+2+1+1+2+2=9...Is here any thing wrong in my solution ..

Rajaram Meher - 3 years, 4 months ago

Log in to reply

Your values of A , B , C , D , E , F A,B,C,D,E,F would not yield e 2 / 2 e^{-2} / \sqrt2 .

Pi Han Goh - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...