DeMoivre's Theorem 2015

Algebra Level 4

z = ( sin π 2015 + i cos π 2015 ) 2015 , ( z ) 2015 = ? \large \displaystyle z=\left(\sin\frac{\pi}{2015}+i\cos\frac{\pi}{2015}\right)^{2015}\ \qquad , \qquad (-z)^{2015} = \ ?

1 None of the above -1 i i i -i

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

z = ( i ( cos π 2015 i sin π 2015 ) ) 2015 z = i 2015 ( cos π i sin π ) z = i ( 1 ) z = i z = i ( z ) 2015 = ( i ) 2015 ( z ) 2015 = i z=\left(i\left(\cos\dfrac {\pi} {2015}-i \sin \dfrac {\pi} {2015}\right)\right)^{2015} \\ z=i^{2015}\left(\cos \pi-i \sin \pi\right) \\ z=-i(-1) \\z=i \\-z=-i \\(-z)^{2015}=(-i)^{2015} \\(-z)^{2015}=\boxed{i}

why you common i in first line?

Satyabrata Jana - 5 years, 9 months ago

Log in to reply

To obtain a expression of the form cos θ + i sin θ \cos\theta+i\sin\theta , and then apply DeMoivre's Theorem.

Alan Enrique Ontiveros Salazar - 5 years, 9 months ago

Notice that 1/i = -i

Joe Bratt - 2 years, 5 months ago

I may be forgetting something, however, shouldn't z z be in the form c o s π + i s i n π cos\pi + isin\pi rather than c o s π i s i n π cos\pi - isin\pi ?

Sam Subbukumar - 5 years, 9 months ago

Log in to reply

It can also be of the form cos θ i sin θ \cos\theta-i\sin\theta , because it comes from cos ( θ ) + i sin ( θ ) \cos(-\theta)+i\sin(-\theta) .

Alan Enrique Ontiveros Salazar - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...