Denesting of Ramanujan's radicals (2)

Algebra Level 4

For what real value k k does

2 3 1 3 = 1 9 3 k 9 3 + k 2 9 3 ? \large \sqrt[3]{\sqrt[3]{2}-1} = \sqrt[3]{\frac{1}{9}} - \sqrt[3]{\frac{k}{9}} + \sqrt[3]{\frac{k^2}{9}}?


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 13, 2017

Since 9 ( 2 1 3 1 ) ( 2 1 3 + 1 ) 3 = 9 ( 2 1 3 1 ) ( 2 + 3 2 2 3 + 3 2 1 3 + 1 ) = 27 ( 2 1 3 1 ) ( 1 + 2 1 3 + 2 2 3 ) = 27 ( 2 1 ) = 27 = ( 2 + 1 ) 3 9(2^{\frac13} - 1)(2^{\frac13}+1)^3 \; = \; 9(2^{\frac13}-1)(2 + 3\cdot2^{\frac23} + 3\cdot2^{\frac13} + 1) = 27(2^{\frac13}-1)(1+2^{\frac13}+2^{\frac23}) \; = \; 27(2-1) = 27 = (2+1)^3 we have 9 ( 2 1 3 1 ) = ( 2 + 1 2 1 3 + 1 ) 3 = ( 1 2 1 3 + 2 2 3 ) 3 9(2^{\frac13}-1) \; = \; \left(\frac{2+1}{2^{\frac13} + 1}\right)^3 \; = \; \big(1 - 2^{\frac13} + 2^{\frac23}\big)^3 and hence 2 3 1 3 = 1 9 3 2 9 3 + 4 9 3 \sqrt[3]{\sqrt[3]{2}-1} \; =\; \sqrt[3]{\tfrac{1}{9}} - \sqrt[3]{\tfrac{2}{9}} + \sqrt[3]{\tfrac{4}{9}} and hence k = 2 k = \boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...