4 4 9 + 2 0 6 + 4 4 9 − 2 0 6 = a b
If a and b are positive integers and b is square-free, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
isnt ( 2 − 3 ) 4 also a solution for the second term
so wouldn't 2 2 also be a solution?
Log in to reply
When you square a quantity you introduce an invalid solution. 9 = 3 and not − 3 though 9 = ( − 3 ) 2 .
( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4 = x 4 + y 4 + 4 x y ( x 2 + y 2 ) + 6 ( x y ) 2
⟹ ( x + y ) 4 = x 4 + y 4 + 4 x y ( ( x + y ) 2 − 2 x y ) + 6 ( x y ) 2 = x 4 + y 4 + 4 x y ( x + y ) 2 − 2 ( x y ) 2 .
Now if x = 4 4 9 + 2 0 6 and y = 4 4 9 − 2 0 6 we have that
x 4 + y 4 = ( 4 9 + 2 0 6 ) + ( 4 9 − 2 0 6 ) = 9 8 and x y = 4 2 4 0 1 − 4 0 0 ∗ 6 = 1 .
Thus ( x + y ) 4 = 9 8 + 4 ( x + y ) 2 − 2
⟹ ( x + y ) 4 − 4 ( x + y ) 2 − 9 6 = 0
⟹ ( ( x + y ) 2 − 1 2 ) ( ( x + y ) 2 + 8 ) = 0 ,
so either ( x + y ) 2 = 1 2 or ( x + y ) 2 = − 8 .
assuming x and y to be real numbers, we can say that ( x + y ) 2 = 1 2 , and so x + y = 1 2 = 3 2
Hence a + b = 5 .
√(√(49±20√6)) = √(5 ±2√6), and √(5 ±2√6) = √3 ± √2,
So ∜(49+20√6) + ∜(49-20√6) = 2√3, and a+b = 5
Problem Loading...
Note Loading...
Set Loading...
Note that
( 3 + 2 ) 4 = ( 3 ) 4 + 4 ( 3 ) 3 2 + 6 ( 3 ) 2 ( 2 ) 2 + 4 3 ( 2 ) 3 + ( 2 ) 4 = 9 + 1 2 6 + 3 6 + 8 6 + 4 = 4 9 + 2 0 6
Similarly, ( 3 − 2 ) 4 = 4 9 − 2 0 6 . And
4 4 9 + 2 0 6 + 4 4 9 − 2 0 6 = 4 ( 3 + 2 ) 4 + 4 ( 3 − 2 ) 4 = 3 + 2 + 3 − 2 = 2 3
⟹ a + b = 2 + 3 = 5