Denesting of Ramanujan's radicals

Algebra Level 3

49 + 20 6 4 + 49 20 6 4 = a b \large \sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}} = a\sqrt{b}

If a a and b b are positive integers and b b is square-free, find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 16, 2017

Note that

( 3 + 2 ) 4 = ( 3 ) 4 + 4 ( 3 ) 3 2 + 6 ( 3 ) 2 ( 2 ) 2 + 4 3 ( 2 ) 3 + ( 2 ) 4 = 9 + 12 6 + 36 + 8 6 + 4 = 49 + 20 6 \begin{aligned} (\sqrt 3 + \sqrt 2)^4 & = (\sqrt 3)^4 + 4 (\sqrt 3)^3\sqrt 2 + 6 (\sqrt 3)^2(\sqrt 2)^2 + 4 \sqrt 3(\sqrt 2)^3 + (\sqrt 2)^4 \\ & = 9 + 12 \sqrt 6 + 36 + 8 \sqrt 6 + 4 \\ & = 49 + 20 \sqrt 6 \end{aligned}

Similarly, ( 3 2 ) 4 = 49 20 6 \begin{aligned} (\sqrt 3 - \sqrt 2)^4 & = 49 - 20 \sqrt 6 \end{aligned} . And

49 + 20 6 4 + 49 20 6 4 = ( 3 + 2 ) 4 4 + ( 3 2 ) 4 4 = 3 + 2 + 3 2 = 2 3 \begin{aligned} \sqrt [4]{49 + 20 \sqrt 6} +\sqrt [4]{49 - 20 \sqrt 6} & = \sqrt [4]{(\sqrt 3 + \sqrt 2)^4} +\sqrt [4]{(\sqrt 3 - \sqrt 2)^4} \\ & = \sqrt 3 + \sqrt 2 + \sqrt 3 - \sqrt 2 \\ & = 2\sqrt 3 \end{aligned}

a + b = 2 + 3 = 5 \implies a+b = 2 + 3 = \boxed{5}

isnt ( 2 3 ) 4 (\sqrt{2}-\sqrt{3})^{4} also a solution for the second term

so wouldn't 2 2 2\sqrt{2} also be a solution?

Anirudh Sreekumar - 4 years, 3 months ago

Log in to reply

When you square a quantity you introduce an invalid solution. 9 = 3 \sqrt 9 = 3 and not 3 -3 though 9 = ( 3 ) 2 \sqrt 9 = \sqrt {(-3)^2} .

Chew-Seong Cheong - 4 years, 3 months ago
Ravneet Singh
Jan 18, 2017

( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4 = x 4 + y 4 + 4 x y ( x 2 + y 2 ) + 6 ( x y ) 2 (x + y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4} = x^{4} + y^{4} + 4xy(x^{2} + y^{2}) + 6(xy)^{2}

( x + y ) 4 = x 4 + y 4 + 4 x y ( ( x + y ) 2 2 x y ) + 6 ( x y ) 2 = x 4 + y 4 + 4 x y ( x + y ) 2 2 ( x y ) 2 . \Longrightarrow (x + y)^{4} = x^{4} + y^{4} + 4xy((x + y)^{2} - 2xy) + 6(xy)^{2} = x^{4} + y^{4} + 4xy(x + y)^{2} - 2(xy)^{2}.

Now if x = 49 + 20 6 4 \large x = \sqrt[4]{49 + 20\sqrt{6}} and y = 49 20 6 4 \large y = \sqrt[4]{49 - 20\sqrt{6}} we have that

x 4 + y 4 = ( 49 + 20 6 ) + ( 49 20 6 ) = 98 x^{4} + y^{4} = (49 + 20\sqrt{6}) + (49 - 20\sqrt{6}) = 98 and x y = 2401 400 6 4 = 1. xy = \sqrt[4]{2401 - 400*6} = 1.

Thus ( x + y ) 4 = 98 + 4 ( x + y ) 2 2 (x + y)^{4} = 98 + 4(x + y)^{2} - 2

( x + y ) 4 4 ( x + y ) 2 96 = 0 \Longrightarrow (x + y)^{4} - 4(x + y)^{2} - 96 = 0

( ( x + y ) 2 12 ) ( ( x + y ) 2 + 8 ) = 0 , \Longrightarrow ((x + y)^{2} - 12)((x + y)^{2} + 8) = 0,

so either ( x + y ) 2 = 12 (x + y)^{2} = 12 or ( x + y ) 2 = 8. (x + y)^{2} = -8.

assuming x x and y y to be real numbers, we can say that ( x + y ) 2 = 12 , (x + y)^{2} = 12, and so x + y = 12 = 3 2 x + y = \sqrt{12} = 3\sqrt{2}

Hence a + b = 5 . a + b = \boxed{5}.

Rab Gani
Jan 17, 2017

√(√(49±20√6)) = √(5 ±2√6), and √(5 ±2√6) = √3 ± √2,

So   ∜(49+20√6)  + ∜(49-20√6)  = 2√3, and  a+b = 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...