Denominator of volume of n dimensional ball of radius 1 of dimension 20

Calculus Level 2

Find the volume of a 20 20 -dimensional ball of radius r r .

If this volume can be expressed as π 10 r 20 D \dfrac{\pi^{10} r^{20}}{D} , submit your answer as D D .


Note: You just look up the formula in the English Wikipedia. I know, I did after solving the problem with relatively simple integration and then a proof by induction to extend the formula.


The answer is 3628800.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

If so, then you will discover that the denominator is 20 2 ! \frac{20}{2}! and that you can do that computation by hand or on most cheap scientific calculators.

Here is a derivation of the volume formula for dimension n and radius r.

Using Mathematica 11.3. #1 and #2 are the first and second parameters and the & states the formula can be used as functions.

n 0 = 1 & n_0=1\& answers = Table [ n i = Evaluate [ FullSimplify [ Evaluate [ $#$1 $#$1 n i 1 ( $#$1 2 x 2 ) d x ] , $#$1 R $#$1 0 ] ] & , { i , Range [ 1 , 10 ] } ] giving: \text{answers}=\text{Table}\left[n_i=\text{Evaluate}\left[\text{FullSimplify}\left[\text{Evaluate}\left[\int_{-\text{\$\#\$1}}^{\text{\$\#\$1}} n_{i-1}\left(\sqrt{\text{\$\#\$1}^2-x^2}\right) \, dx\right],\text{\$\#\$1}\in \mathbb{R}\land \text{\$\#\$1}\geq 0\right]\right]\&,\{i,\text{Range}[1,10]\}\right]\text{ giving:} { 2 $#$1 & , π $#$1 2 & , 4 π $#$1 3 3 & , π 2 $#$1 4 2 & , 8 π 2 $#$1 5 15 & , π 3 $#$1 6 6 & , 16 π 3 $#$1 7 105 & , π 4 $#$1 8 24 & , 32 π 4 $#$1 9 945 & , π 5 $#$1 10 120 & } \left\{2 \text{\$\#\$1}\&,\pi \text{\$\#\$1}^2\&,\frac{4 \pi \text{\$\#\$1}^3}{3}\&,\frac{\pi ^2 \text{\$\#\$1}^4}{2}\&,\frac{8 \pi ^2 \text{\$\#\$1}^5}{15}\&,\frac{\pi ^3 \text{\$\#\$1}^6}{6}\&,\frac{16 \pi ^3 \text{\$\#\$1}^7}{105}\&,\frac{\pi ^4 \text{\$\#\$1}^8}{24}\&,\frac{32 \pi ^4 \text{\$\#\$1}^9}{945}\&,\frac{\pi ^5 \text{\$\#\$1}^{10}}{120}\&\right\}

Then, by examination and a proof by induction, the general formula results: v = π $#$1 2 $#$2 $#$1 Γ ( $#$1 2 + 1 ) & ; v=\frac{\pi ^{\frac{\text{\$\#\$1}}{2}} \text{\$\#\$2}^{\text{\$\#\$1}}}{\Gamma \left(\frac{\text{\$\#\$1}}{2}+1\right)}\&;

The data that lead me to the induction are:

The volume ratios from dimension 2 to 20 are: 2 r , π r 2 , 4 r 3 , 3 π r 8 , 16 r 15 , 5 π r 16 , 32 r 35 , 35 π r 128 , 256 r 315 , 63 π r 256 , 512 r 693 , 231 π r 1024 , 2048 r 3003 , 429 π r 2048 , 4096 r 6435 , 6435 π r 32768 , 65536 r 109395 , 12155 π r 65536 , 131072 r 230945 , 46189 π r 262144 2 r,\frac{\pi r}{2},\frac{4 r}{3},\frac{3 \pi r}{8},\frac{16 r}{15},\frac{5 \pi r}{16},\frac{32 r}{35},\frac{35 \pi r}{128},\frac{256 r}{315},\frac{63 \pi r}{256},\frac{512 r}{693},\frac{231 \pi r}{1024},\frac{2048 r}{3003},\frac{429 \pi r}{2048},\frac{4096 r}{6435},\frac{6435 \pi r}{32768},\frac{65536 r}{109395},\frac{12155 \pi r}{65536},\frac{131072 r}{230945},\frac{46189 \pi r}{262144}

The values of the volume formulae, ( π r ) i Γ ( i 2 + 1 ) \frac{\left(\sqrt{\pi } r\right)^i}{\Gamma \left(\frac{i}{2}+1\right)} , are 1 , 2 r , π r 2 , 4 π r 3 3 , π 2 r 4 2 , 8 π 2 r 5 15 , π 3 r 6 6 , 16 π 3 r 7 105 , π 4 r 8 24 , 32 π 4 r 9 945 , π 5 r 10 120 , 64 π 5 r 11 10395 , π 6 r 12 720 , 128 π 6 r 13 135135 , π 7 r 14 5040 , 256 π 7 r 15 2027025 , π 8 r 16 40320 , 512 π 8 r 17 34459425 , π 9 r 18 362880 , 1024 π 9 r 19 654729075 , π 10 r 20 3628800 1,2 r,\pi r^2,\frac{4 \pi r^3}{3},\frac{\pi ^2 r^4}{2},\frac{8 \pi ^2 r^5}{15},\frac{\pi ^3 r^6}{6},\frac{16 \pi ^3 r^7}{105},\frac{\pi ^4 r^8}{24},\frac{32 \pi ^4 r^9}{945},\frac{\pi ^5 r^{10}}{120},\frac{64 \pi ^5 r^{11}}{10395},\frac{\pi ^6 r^{12}}{720},\\\frac{128 \pi ^6 r^{13}}{135135},\frac{\pi ^7 r^{14}}{5040},\frac{256 \pi ^7 r^{15}}{2027025},\frac{\pi ^8 r^{16}}{40320},\frac{512 \pi ^8 r^{17}}{34459425},\frac{\pi ^9 r^{18}}{362880},\frac{1024 \pi ^9 r^{19}}{654729075},\frac{\pi ^{10} r^{20}}{3628800}

The values of the area formulae, ( π r ) i Γ ( i 2 + 1 ) \frac{\left(\sqrt{\pi }r\right)^{i}}{\Gamma \left(\frac{i}{2}+1\right)} are 0 , 2 , 2 π r , 4 π r 2 , 2 π 2 r 3 , 8 π 2 r 4 3 , π 3 r 5 , 16 π 3 r 6 15 , π 4 r 7 3 , 32 π 4 r 8 105 , π 5 r 9 12 , 64 π 5 r 10 945 , π 6 r 11 60 , 128 π 6 r 12 10395 , π 7 r 13 360 , 256 π 7 r 14 135135 , π 8 r 15 2520 , 512 π 8 r 16 2027025 , π 9 r 17 20160 , 1024 π 9 r 18 34459425 , π 10 r 19 181440 0,2,2 \pi r,4 \pi r^2,2 \pi ^2 r^3,\frac{8 \pi ^2 r^4}{3},\pi ^3 r^5,\frac{16 \pi ^3 r^6}{15},\frac{\pi ^4 r^7}{3},\frac{32 \pi ^4 r^8}{105},\frac{\pi ^5 r^9}{12},\frac{64 \pi ^5 r^{10}}{945},\frac{\pi ^6 r^{11}}{60},\frac{128 \pi ^6 r^{12}}{10395},\\\frac{\pi ^7 r^{13}}{360},\frac{256 \pi ^7 r^{14}}{135135},\frac{\pi ^8 r^{15}}{2520},\frac{512 \pi ^8 r^{16}}{2027025},\frac{\pi ^9 r^{17}}{20160},\frac{1024 \pi ^9 r^{18}}{34459425},\frac{\pi ^{10} r^{19}}{181440}

Now, permitting the dimension to be a non-integer real, at what dimension is the volume the largest fraction of a unit n-cube?

m a x = n / . F l a t t e n [ N S o l v e [ d v [ n , 1 / 2 ] = = 0 , n ] ] gives 0.476582582306 with a "volume" of 1.03869332805 max = n /. Flatten[NSolve[dv[n, 1/2] == 0, n]]\text{ gives }0.476582582306\text{ with a "volume" of }1.03869332805

The limits of both the volume and area formulae as the dimension goes to \infty is 0 0 .

The volume and area formulae for the 0-dimensional and 1-dimensional are somewhat interesting. In the 0 dimensional case, the ball is a point, which is the "universe" and the "universe" has no boundary. In the 1-dimensional case, the ball is a bounded line of length 2 r 2r with 2 ends.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...