Find the volume of a -dimensional ball of radius .
If this volume can be expressed as , submit your answer as .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If so, then you will discover that the denominator is 2 2 0 ! and that you can do that computation by hand or on most cheap scientific calculators.
Here is a derivation of the volume formula for dimension n and radius r.
Using Mathematica 11.3. #1 and #2 are the first and second parameters and the & states the formula can be used as functions.
n 0 = 1 & answers = Table [ n i = Evaluate [ FullSimplify [ Evaluate [ ∫ − $#$1 $#$1 n i − 1 ( $#$1 2 − x 2 ) d x ] , $#$1 ∈ R ∧ $#$1 ≥ 0 ] ] & , { i , Range [ 1 , 1 0 ] } ] giving: { 2 $#$1 & , π $#$1 2 & , 3 4 π $#$1 3 & , 2 π 2 $#$1 4 & , 1 5 8 π 2 $#$1 5 & , 6 π 3 $#$1 6 & , 1 0 5 1 6 π 3 $#$1 7 & , 2 4 π 4 $#$1 8 & , 9 4 5 3 2 π 4 $#$1 9 & , 1 2 0 π 5 $#$1 1 0 & }
Then, by examination and a proof by induction, the general formula results: v = Γ ( 2 $#$1 + 1 ) π 2 $#$1 $#$2 $#$1 & ;
The data that lead me to the induction are:
The volume ratios from dimension 2 to 20 are: 2 r , 2 π r , 3 4 r , 8 3 π r , 1 5 1 6 r , 1 6 5 π r , 3 5 3 2 r , 1 2 8 3 5 π r , 3 1 5 2 5 6 r , 2 5 6 6 3 π r , 6 9 3 5 1 2 r , 1 0 2 4 2 3 1 π r , 3 0 0 3 2 0 4 8 r , 2 0 4 8 4 2 9 π r , 6 4 3 5 4 0 9 6 r , 3 2 7 6 8 6 4 3 5 π r , 1 0 9 3 9 5 6 5 5 3 6 r , 6 5 5 3 6 1 2 1 5 5 π r , 2 3 0 9 4 5 1 3 1 0 7 2 r , 2 6 2 1 4 4 4 6 1 8 9 π r
The values of the volume formulae, Γ ( 2 i + 1 ) ( π r ) i , are 1 , 2 r , π r 2 , 3 4 π r 3 , 2 π 2 r 4 , 1 5 8 π 2 r 5 , 6 π 3 r 6 , 1 0 5 1 6 π 3 r 7 , 2 4 π 4 r 8 , 9 4 5 3 2 π 4 r 9 , 1 2 0 π 5 r 1 0 , 1 0 3 9 5 6 4 π 5 r 1 1 , 7 2 0 π 6 r 1 2 , 1 3 5 1 3 5 1 2 8 π 6 r 1 3 , 5 0 4 0 π 7 r 1 4 , 2 0 2 7 0 2 5 2 5 6 π 7 r 1 5 , 4 0 3 2 0 π 8 r 1 6 , 3 4 4 5 9 4 2 5 5 1 2 π 8 r 1 7 , 3 6 2 8 8 0 π 9 r 1 8 , 6 5 4 7 2 9 0 7 5 1 0 2 4 π 9 r 1 9 , 3 6 2 8 8 0 0 π 1 0 r 2 0
The values of the area formulae, Γ ( 2 i + 1 ) ( π r ) i are 0 , 2 , 2 π r , 4 π r 2 , 2 π 2 r 3 , 3 8 π 2 r 4 , π 3 r 5 , 1 5 1 6 π 3 r 6 , 3 π 4 r 7 , 1 0 5 3 2 π 4 r 8 , 1 2 π 5 r 9 , 9 4 5 6 4 π 5 r 1 0 , 6 0 π 6 r 1 1 , 1 0 3 9 5 1 2 8 π 6 r 1 2 , 3 6 0 π 7 r 1 3 , 1 3 5 1 3 5 2 5 6 π 7 r 1 4 , 2 5 2 0 π 8 r 1 5 , 2 0 2 7 0 2 5 5 1 2 π 8 r 1 6 , 2 0 1 6 0 π 9 r 1 7 , 3 4 4 5 9 4 2 5 1 0 2 4 π 9 r 1 8 , 1 8 1 4 4 0 π 1 0 r 1 9
Now, permitting the dimension to be a non-integer real, at what dimension is the volume the largest fraction of a unit n-cube?
m a x = n / . F l a t t e n [ N S o l v e [ d v [ n , 1 / 2 ] = = 0 , n ] ] gives 0 . 4 7 6 5 8 2 5 8 2 3 0 6 with a "volume" of 1 . 0 3 8 6 9 3 3 2 8 0 5
The limits of both the volume and area formulae as the dimension goes to ∞ is 0 .
The volume and area formulae for the 0-dimensional and 1-dimensional are somewhat interesting. In the 0 dimensional case, the ball is a point, which is the "universe" and the "universe" has no boundary. In the 1-dimensional case, the ball is a bounded line of length 2 r with 2 ends.