Dependent on m m ?

For each number n n , we define the "Digital Sum" as sum of the digits of n n and repeat the process until the result is a single digit number.

Example :

For 1234 1 + 2 + 3 + 4 10 1 + 0 = 1 1234 \rightarrow 1 + 2 + 3 + 4 \rightarrow 10 \rightarrow 1 + 0 = 1

Find the digital sum of 4617 4617 m times \underset { m \text{ times} }{ \underbrace { 4617\ldots 4617} } .

m > 0 m > 0 .


Inspired by 2016 Digital Sum


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The digital sum for 4617 is 4 + 6 + 1 + 7 = 18 = 1 + 8 = 9. Nine is a special number where 9, n times or m times the digital number remains the same. For Example : 9 × 123 = 1107 , Digital Sum is 9. This same in all the cases with the number nine. So the Digital sum is always nine for any number of terms. \large \displaystyle \text{The digital sum for } 4617 \text{ is } 4+6+1+7 = 18 = 1+ 8 = 9.\\ \large \displaystyle \text{ Nine is a special number where 9, n times or m times the digital number remains the same.}\\ \large \displaystyle \text{For Example : } 9 \times 123 = 1107, \text{ Digital Sum is } 9.\\ \large \displaystyle \text{This same in all the cases with the number nine.}\\ \large \displaystyle \text{So the Digital sum is always nine for any number of terms.}

Saakshi Singh
Apr 11, 2016

4617 repeated m times , then digital sum is 18m. Broken again into 10m + 8m or m + 8m = 9m. Now whatever the value of m , digit sum will be nine.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...