Deranged integral

Calculus Level 2

Let

I ( n ) = 0 ( t 1 ) n e t d t . I(n) = \int\limits_0^\infty (t-1)^n e^{-t} \, dt.

If D ( n ) D(n) is the number of derangements of n n , then what is I ( 42 ) D ( 42 ) ? I(42)-D(42)?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I ( n ) = 0 ( t 1 ) n e t d t I\left( n \right)=\int _{ 0 }^{ \infty }{ { (t-1) }^{ n } } { e }^{ -t }dt

We know from the binomial expansion of ( t 1 ) n { (t-1) }^{ n } that:

( t 1 ) n = t n ( n 1 ) t n 1 + . . . . + ( n r ) t n r ( 1 ) r + . . . . ( n n ) ( 1 ) n = r = 0 n ( n r ) t n r ( 1 ) r { (t-1) }^{ n }={ t }^{ n }-\left( \begin{matrix} n \\ 1 \end{matrix} \right) { t }^{ n-1 }+....+\left( \begin{matrix} n \\ r \end{matrix} \right) { t }^{ n-r }{ (-1) }^{ r }+....\left( \begin{matrix} n \\ n \end{matrix} \right) { (-1) }^{ n }\\ \quad \quad \quad \quad =\sum _{ r=0 }^{ n }{ \left( \begin{matrix} n \\ r \end{matrix} \right) } { t }^{ n-r }{ (-1) }^{ r }

Inputting this in the given integral and exchanging integral with summation:

I ( n ) = r = 0 n ( n r ) ( 1 ) r 0 t n r e t d t I\left( n \right)=\sum _{ r=0 }^{ n }{ \left( \begin{matrix} n \\ r \end{matrix} \right) } { (-1) }^{ r }\int _{ 0 }^{ \infty }{ { t }^{ n-r } } { e }^{ -t }dt

Now, invoking the gamma integral, we get:

I ( n ) = r = 0 n ( n r ) ( 1 ) r 0 t n r e t d t I ( n ) = r = 0 n ( n r ) ( 1 ) r ( n r ) ! I ( n ) = r = 0 n n ! r ! ( n r ) ! ( 1 ) r ( n r ) ! I ( n ) = n ! r = 0 n ( 1 ) r r ! I\left( n \right) =\sum _{ r=0 }^{ n }{ \left( \begin{matrix} n \\ r \end{matrix} \right) } { (-1) }^{ r }\int _{ 0 }^{ \infty }{ { t }^{ n-r } } { e }^{ -t }dt\\ I\left( n \right) =\sum _{ r=0 }^{ n }{ \left( \begin{matrix} n \\ r \end{matrix} \right) } { (-1) }^{ r }(n-r)!\\ I\left( n \right) =\sum _{ r=0 }^{ n }{ \frac { n! }{ r!(n-r)! } } { (-1) }^{ r }(n-r)!\\ I\left( n \right) =n!\sum _{ r=0 }^{ n }{ \frac { { (-1) }^{ r } }{ r! } }

This expression for I ( n ) I\left( n \right) is same as the number of derangements for n n objects.

So,

I ( n ) = n ! r = 0 n ( 1 ) r r ! = D ( n ) I ( n ) D ( n ) = 0 I\left( n \right) =n!\sum _{ r=0 }^{ n }{ \frac { { (-1) }^{ r } }{ r! } } =D\left( n \right)\\ I\left( n \right)-D\left( n \right)=0

Cheers! :)

Ceesay Muhammed
Nov 27, 2016

D(42)=[42!/e].

Multiply and divide I(n) by e, then we have

I(n) = (1/e)*G(n+1) = n!/e

Then I(42)=42!/e

{G represents the gamma function}

So I(42) - D(42) = 42!/e - [42!/e], which

is pretty much 0.

Surely the lower limit on the integral would be -1, so it wouldn't be the gamma function? I think that's why your answer is not exactly 0.

Joe Mansley - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...