Derivative?

Calculus Level 2

In the curve y = x x x x . . . y=x^{x^{x^{x^{.^{.^{.}}}}}} . The targent line for x = 1 x=1 has equation y = m x + n y=mx+n . Find m + n m+n


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Deepak Kumar
Jul 29, 2015

Clearly the point is (1,1)=>eqn of tangent is y-1=m(x-1) which gives y= mx+(1-m).Hence m+n=1.Where is the need to evaluate dy/dx at x=1 :)

Chew-Seong Cheong
Jul 30, 2015

y = x x x x . . . y = x y ln y = y ln x y = x^{x^{x^{x^{.^{.^{.}}}}}} \quad \Rightarrow y = x^y \quad \Rightarrow \ln{y} = y \ln{x}

d d x ( ln y ) = d d x ( y ln x ) 1 y d y d x = ln x d y d x + y x [ x = 1 y = 1 y y = 1 ] 1 1 d y d x = ln 1 d y d x + 1 1 d y d x = 1 = m \begin{aligned} \Rightarrow \frac{d}{dx} (\ln{y}) & = \frac{d}{dx} \left(y \ln{x} \right) \\ \frac{1}{\color{#3D99F6}{y}} \frac{dy}{dx} & = \ln{x} \frac{dy}{dx} + \frac{\color{#3D99F6}{y}}{x} \quad \quad \color{#3D99F6}{[x = 1 \quad \Rightarrow y = 1^y \quad \Rightarrow y =1 ]} \\ \frac{1}{\color{#3D99F6}{1}} \frac{dy}{dx} & = \ln{1} \frac{dy}{dx} + \frac{\color{#3D99F6}{1}}{1} \\ \Rightarrow \frac{dy}{dx} & = \color{#D61F06}{1} = \color{#D61F06}{m} \end{aligned}

y 1 x 1 = m = 1 y 1 = x 1 y = 1 x + 0 m + n = 1 + 0 = 1 \begin{aligned} \Rightarrow \frac{y-1}{x-1} & = \color{#D61F06}{m} = \color{#D61F06}{1} \\ \Rightarrow y -1 & = x - 1 \\ \Rightarrow y & = \color{#D61F06}{1}x + \color{#D61F06}{0} \\ \Rightarrow \color{#D61F06}{m} + \color{#D61F06}{n} & = \color{#D61F06}{1} + \color{#D61F06}{0} = \boxed{1} \end{aligned}

Sean Sullivan
Jul 29, 2015

We start with y = x x x x . . . y=x^{x^{x^{x^{.^{.^{.}}}}}}

Taking the natural log of both sides we have: ln y = ln x x x x . . . = x x x x . . . ln x = y ln x ln y y = ln x \ln y=\ln x^{x^{x^{x^{.^{.^{.}}}}}} = x^{x^{x^{x^{.^{.^{.}}}}}} \ln x = y \ln x \implies \frac{\ln y}{y}=\ln{x}

By implicit differentiation: 1 + ln y y 2 d y d x = 1 x \frac{1+\ln y}{y^2} \frac{dy}{dx} =\frac{1}{x}

At x = 1 x=1 , y = 1 1 1 1 . . . = 1 y=1^{1^{1^{1^{.^{.^{.}}}}}}=1 so 1 + ln 1 1 2 d y d x = 1 1 d y d x = 1 \frac{1+\ln 1}{1^2} \frac{dy}{dx} =\frac{1}{1} \implies \frac{dy}{dx}=1

We now have m = 1 m=1 and point ( 1 , 1 ) (1,1) on the function at x = 1 x=1 so y = 1 ( x 1 ) + 1 = x y=1(x-1)+1=x which gives m = 1 , n = 0 , m=1, n=0, and the answer is 1 + 0 = 1 1+0=\boxed{1}

m + n = m 1 + n = m x + n = y = x x x = 1 1 1 = 1 . m + n = m\cdot 1 + n = mx + n = y = x^{x^{x^{\dots}}} = 1^{1^{1^{\dots}}} = \boxed{1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...