Given that and are positive reals satisfying . If the maximum value of the expression above can be expressed as where and are positive integers such that and is square-free, determine .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Suppose a ≥ b ≥ c . Let a = s + t , b = s − t with 0 ≤ t ≤ s − t (because a ≥ b ≥ c ).
Let f ( t ) = 3 + ( s + t ) 2 c ( s − t ) + 3 + ( s − t ) 2 c ( s + t ) + 3 + c 2 s 2 − t 2 with 0 ≤ t ≤ s − t .
We have f ( t ) = 3 + ( s + t ) 2 − c − [ 3 + ( s + t ) 2 ] 2 2 c ( s 2 − t 2 ) + 3 + ( s − t ) 2 c + [ 3 + ( s − t ) 2 ] 2 2 c ( s 2 − t 2 ) + 3 + c 2 2 t .
Let u = 3 + ( s + t ) 2 , v = 3 + ( s − t ) 2 . We have:
f ′ ( c ) = u v 4 c s t + u 2 v 2 8 c s t ( s 2 − t 2 ) ( u + v ) − 3 + c 2 2 t .
We also have: a + b = 2 s ⟹ 1 ≤ s ≤ 1 . 5 (because a ≥ b ≥ c ).
⟹ c s = ( 3 − 2 s ) s ≤ 4 ( 3 − 2 s + s ) 2 = 4 ( 3 − s ) 2 ≤ 4 ( 3 − 1 ) 2 = 1 .
We have u = 3 + ( s + t ) 2 ≥ 3 + ( 1 + 0 ) 2 = 4 and v = 3 + ( s − t ) 2 ≥ 3 + [ s − ( s − c ) ] 2 = 3 + c 2 (because 0 ≤ c ≤ s − c ).
⟹ u v 4 c s t ≤ 3 + c 2 1 ( ∗ )
According to Cauchi-Schwarz inequality, we have:
u 2 v 2 = [ 3 + ( s + t ) 2 ] 2 [ 3 − ( s − t ) 2 ] ≤ 4 4 ( s 2 − t 2 ) (1)
8 c s ( u + v ) ( 3 + c 2 ) = 4 . 4 c s ( 3 + s 2 + t 2 ) ( 3 + c 2 ) ≤ 4 ( 3 4 c s + 3 + s 2 + t 2 + 3 + c 2 ) 3 .
We also have
4 c s + 3 + s 2 + t 2 + 3 + c 2 ≤ 4 ( 3 − 2 s ) s + 6 + s 2 + ( 3 s − 3 ) 2 + ( 3 − 2 s ) 2 = 1 2 + 6 ( s − 1 ) ( s − 2 ) ≤ 1 2 (because c = 3 − 2 s , t 2 ≤ s − c = 3 s − 3 ).
Therefore 8 c s ( u + v ) ( 3 + c 2 ) ≤ 4 ( 3 1 2 ) 3 = 4 4 ( 2 )
(1),(2) ⟹ u 2 v 2 8 c s t ( s 2 − t 2 ) ( u + v ) = 3 + c 2 8 c s ( 3 + c 2 ) ( u + v ) . u 2 v 2 s 2 − t 2 ≤ 4 4 ( s 2 − t 2 ) s 2 − t 2 . 3 + c 2 4 4 = 3 + c 2 1 ( ∗ ∗ ) .
( ∗ ) , ( ∗ ∗ ) we have f ′ ( t ) ≤ 3 + c 2 2 − 3 + c 2 2 t = ( 1 − t ) 3 + c 2 2 ≤ 0 with t ∈ [ 0 , s − c ] .
⟹ f ( t ) < 0 with t ∈ [ 0 , s − c ] ⟹ f ( t ) < f ( 0 ) with t ∈ [ 0 , s − c ] .
Let g ( s ) = f ( 0 ) = 3 + s 2 2 c s + 3 + c 2 s 2 = 3 + s 2 3 s ( 3 − 2 s ) + 3 + ( 3 − 2 s ) 2 s 2 with s ∈ [ 0 , 1 . 5 ] . We have:
g ′ ( s ) = ( 3 + s 2 ) 2 ( 6 − 8 s ) ( 3 + s 2 ) − 2 s ( 6 s − 4 s 2 ) + [ 3 + ( 3 − 2 s ) 2 ] 2 ( 2 s [ 3 + ( 3 − 2 s ) 2 ] − s 2 ( 8 s − 1 2 ) = ( 3 + s 2 ) 2 [ 3 + ( 3 − 2 s ) 2 ] 2 1 0 8 ( s 2 − 3 s + 4 ) ( s − 1 ) 2 ( − s 2 − 3 s + 6 ) .
Take a look at s 2 − 3 s + 4 = ( s − 1 . 5 ) 2 + 1 . 7 5 > 0 with s ∈ [ 0 , 1 . 5 ] and − s 2 − 3 s + 6 = ( 2 3 3 − 3 − s ) ( 2 3 3 + 3 + s )
We can easily see that M a x ( g ( s ) ) = 2 4 1 1 3 3 − 4 5 when s = 2 3 3 − 3 .
In conclusion the maximum value of the expression above is 2 4 1 1 3 3 − 4 5 when a = b = 2 3 3 − 3 and c = 6 − 3 3 .
We will submit the answer as A + B + C + D = 1 1 + 3 3 + 4 5 + 2 4 = 1 1 3
And Phew, we are done! I don't think this problem should be judged as "easy", even for a level 5 algebra