Unbalanced Symmetric Inequality

Algebra Level 5

a b c 2 + 3 + b c a 2 + 3 + c a b 2 + 3 \large \dfrac{ab}{c^2+3}+\dfrac{bc}{a^2+3}+\dfrac{ca}{b^2+3}

Given that a , b a,b and c c are positive reals satisfying a + b + c = 3 a+b+c=3 . If the maximum value of the expression above can be expressed as A B C D , \dfrac{A\sqrt{B}-C}{D} \; , where A , B , C A,B,C and D D are positive integers such that gcd ( A , C ) = gcd ( A , D ) = 1 \gcd(A,C)=\gcd(A,D)=1 and B B is square-free, determine A + B + C + D A+B+C+D .


The answer is 113.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Leah Jurgens
Apr 10, 2016

Suppose a b c a \ge b \ge c . Let a = s + t , b = s t a=s+t,b=s-t with 0 t s t 0 \le t \le s-t (because a b c a \ge b \ge c ).

Let f ( t ) = c ( s t ) 3 + ( s + t ) 2 + c ( s + t ) 3 + ( s t ) 2 + s 2 t 2 3 + c 2 f(t)=\frac{c(s-t)}{3+(s+t)^2}+\frac{c(s+t)}{3+(s-t)^2}+\frac{s^2-t^2}{3+c^2} with 0 t s t 0 \le t \le s-t .

We have f ( t ) = c 3 + ( s + t ) 2 2 c ( s 2 t 2 ) [ 3 + ( s + t ) 2 ] 2 + c 3 + ( s t ) 2 + 2 c ( s 2 t 2 ) [ 3 + ( s t ) 2 ] 2 + 2 t 3 + c 2 f(t)=\frac{-c}{3+(s+t)^2}-\frac{2c(s^2-t^2)}{[3+(s+t)^2]^2}+\frac{c}{3+(s-t)^2}+\frac{2c(s^2-t^2)}{[3+(s-t)^2]^2}+\frac{2t}{3+c^2} .

Let u = 3 + ( s + t ) 2 , v = 3 + ( s t ) 2 u=3+(s+t)^2,v=3+(s-t)^2 . We have:

f ( c ) = 4 c s t u v + 8 c s t ( s 2 t 2 ) ( u + v ) u 2 v 2 2 t 3 + c 2 f'(c)=\frac{4cst}{uv}+\frac{8cst(s^2-t^2)(u+v)}{u^2v^2}-\frac{2t}{3+c^2} .

We also have: a + b = 2 s 1 s 1.5 a+b=2s \implies 1 \le s \le 1.5 (because a b c a \ge b \ge c ).

c s = ( 3 2 s ) s ( 3 2 s + s ) 2 4 = ( 3 s ) 2 4 ( 3 1 ) 2 4 = 1 \implies cs=(3-2s)s \le \frac{(3-2s+s)^2}{4}=\frac{(3-s)^2}{4} \le \frac{(3-1)^2}{4} = 1 .

We have u = 3 + ( s + t ) 2 3 + ( 1 + 0 ) 2 = 4 u=3+(s+t)^2 \ge 3+(1+0)^2 = 4 and v = 3 + ( s t ) 2 3 + [ s ( s c ) ] 2 = 3 + c 2 v=3+(s-t)^2 \ge 3+[s-(s-c)]^2= 3+c^2 (because 0 c s c 0 \le c \le s-c ).

4 c s t u v 1 3 + c 2 ( ) \implies \frac{4cst}{uv} \le \frac{1}{3+c^2}(*)

According to Cauchi-Schwarz inequality, we have:

u 2 v 2 = [ 3 + ( s + t ) 2 ] 2 [ 3 ( s t ) 2 ] 4 4 ( s 2 t 2 ) u^2v^2=[3+(s+t)^2]^2[3-(s-t)^2] \le 4^4(s^2-t^2) (1)

8 c s ( u + v ) ( 3 + c 2 ) = 4.4 c s ( 3 + s 2 + t 2 ) ( 3 + c 2 ) 4 ( 4 c s + 3 + s 2 + t 2 + 3 + c 2 3 ) 3 8cs(u+v)(3+c^2)=4.4cs(3+s^2+t^2)(3+c^2) \le 4(\frac{4cs+3+s^2+t^2+3+c^2}{3})^3 .

We also have

4 c s + 3 + s 2 + t 2 + 3 + c 2 4 ( 3 2 s ) s + 6 + s 2 + ( 3 s 3 ) 2 + ( 3 2 s ) 2 = 12 + 6 ( s 1 ) ( s 2 ) 12 4cs+3+s^2+t^2+3+c^2 \le 4(3-2s)s+6+s^2+(3s-3)^2+(3-2s)^2=12+6(s-1)(s-2) \le 12 (because c = 3 2 s , t 2 s c = 3 s 3 c=3-2s, t^2 \le s-c=3s-3 ).

Therefore 8 c s ( u + v ) ( 3 + c 2 ) 4 ( 12 3 ) 3 = 4 4 ( 2 ) 8cs(u+v)(3+c^2) \le 4(\frac{12}{3})^3=4^4 (2)

(1),(2) 8 c s t ( s 2 t 2 ) ( u + v ) u 2 v 2 = 8 c s ( 3 + c 2 ) ( u + v ) 3 + c 2 . s 2 t 2 u 2 v 2 s 2 t 2 4 4 ( s 2 t 2 ) . 4 4 3 + c 2 = 1 3 + c 2 ( ) \implies \frac{8cst(s^2-t^2)(u+v)}{u^2v^2}=\frac{8cs(3+c^2)(u+v)}{3+c^2}.\frac{s^2-t^2}{u^2v^2} \le \frac{s^2-t^2}{4^4(s^2-t^2)}.\frac{4^4}{3+c^2}=\frac{1}{3+c^2}(**) .

( ) , ( ) (*),(**) we have f ( t ) 2 3 + c 2 2 t 3 + c 2 = ( 1 t ) 2 3 + c 2 0 f'(t) \le \frac{2}{3+c^2}-\frac{2t}{3+c^2}=(1-t)\frac{2}{3+c^2}\le 0 with t [ 0 , s c ] t \in [0,s-c] .

f ( t ) < 0 \implies f(t)<0 with t [ 0 , s c ] t \in [0,s-c] f ( t ) < f ( 0 ) \implies f(t)<f(0) with t [ 0 , s c ] t \in [0,s-c] .

Let g ( s ) = f ( 0 ) = 2 c s 3 + s 2 + s 2 3 + c 2 = 3 s ( 3 2 s ) 3 + s 2 + s 2 3 + ( 3 2 s ) 2 g(s)=f(0)=\frac{2cs}{3+s^2}+\frac{s^2}{3+c^2}=\frac{3s(3-2s)}{3+s^2}+\frac{s^2}{3+(3-2s)^2} with s [ 0 , 1.5 ] s \in [0,1.5] . We have:

g ( s ) = ( 6 8 s ) ( 3 + s 2 ) 2 s ( 6 s 4 s 2 ) ( 3 + s 2 ) 2 + ( 2 s [ 3 + ( 3 2 s ) 2 ] s 2 ( 8 s 12 ) [ 3 + ( 3 2 s ) 2 ] 2 = 108 ( s 2 3 s + 4 ) ( s 1 ) 2 ( s 2 3 s + 6 ) ( 3 + s 2 ) 2 [ 3 + ( 3 2 s ) 2 ] 2 g'(s)=\frac{(6-8s)(3+s^2)-2s(6s-4s^2)}{(3+s^2)^2}+\frac{(2s[3+(3-2s)^2]-s^2(8s-12)}{[3+(3-2s)^2]^2}=\frac{108(s^2-3s+4)(s-1)^2(-s^2-3s+6)}{(3+s^2)^2[3+(3-2s)^2]^2} .

Take a look at s 2 3 s + 4 = ( s 1.5 ) 2 + 1.75 > 0 s^2-3s+4=(s-1.5)^2+1.75 > 0 with s [ 0 , 1.5 ] s \in [0,1.5] and s 2 3 s + 6 = ( 33 3 2 s ) ( 33 + 3 2 + s ) -s^2-3s+6=(\frac{\sqrt{33}-3}{2}-s)(\frac{\sqrt{33}+3}{2}+s)

We can easily see that M a x ( g ( s ) ) = 11 33 45 24 Max(g(s))=\frac{11\sqrt{33}-45}{24} when s = 33 3 2 s=\frac{\sqrt{33}-3}{2} .

In conclusion the maximum value of the expression above is 11 33 45 24 \frac{11\sqrt{33}-45}{24} when a = b = 33 3 2 a=b=\frac{\sqrt{33}-3}{2} and c = 6 33 c=6-\sqrt{33} .

We will submit the answer as A + B + C + D = 11 + 33 + 45 + 24 = 113 A+B+C+D=11+33+45+24=\boxed{113}

And Phew, we are done! I don't think this problem should be judged as "easy", even for a level 5 algebra

Same Substitutes! Great Problem and an even greater solution! An upvote for you my friend!

Raffy Chan - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...