Derivative and Infinite Sum

Calculus Level 5

Let f : R + R f: \mathbb{R}^+ \to \mathbb{R} be defined as f ( x ) = log ( x ) x f(x) = \dfrac{\log(x)}{x} and g : N R g: \mathbb{N} \to \mathbb{R} as g ( n ) = d n d x n ( f ( x ) n ! ) x = 1 g(n) = \dfrac{d^n}{dx^n}\left(\dfrac{f(x)}{n!}\right)\Bigg|_{x=1} .

Evaluate:

lim m k = 2 m 4 m + 1 g ( k ) , m N \large \lim\limits_{m \to \infty} \sum\limits_{k=2m}^{4m+1}g(k), \quad m \in \mathbb{N}


The answer is 0.34657.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aryaman Maithani
Apr 18, 2018

Note:

d n d x n ( log x x ) \substack x = 1 = d n d x n ( log ( 1 + x ) 1 + x ) \substack x = 0 \frac{d^n}{dx^n}\bigg(\frac{\log{x}}{x}\bigg)\Biggr|_{\substack{x=1}}=\frac{d^n}{dx^n}\bigg(\frac{\log{(1+x)}}{1+x}\bigg)\Biggr|_{\substack{x=0}}

log ( 1 + x ) 1 + x = ( x x 2 2 + x 3 3 ) ( 1 x + x 2 x 3 ) ( 2 ) \frac{\log{(1+x)}}{1+x} = \bigg(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots\bigg)\bigg(1 - x + x^2 - x^3 - \dots\bigg) \dots (2)

Co-efficient of x n in above equation = ( 1 ) n + 1 ( 1 + 1 2 + 1 3 + 1 n ) \text{Co-efficient of } x^n \text{ in above equation}= (-1)^{n+1}\bigg(1 + \frac{1}{2} + \frac{1}{3} + \dots \frac{1}{n}\bigg)

For evaluating the n-th derivative of a polynomial (or more appropriately, power series here) at x=0, only information of the co-efficient of x n x^n is required as all the lower powers will disappear due to repeated differentiation and higher powers will vanish on putting x=0. (This is why the transformation in first equation was done.)

Formally:

If f ( x ) = a 0 + a 1 x + a 2 x 2 + \text{If }f(x) = a_0 + a_1x + a_2x^2 + \dots

= n = 0 a n x n =\sum\limits_{n=0}^{\infty}a_nx^n

Then,

d n d x n f ( x ) x = 0 = n ! a n \frac{d^n}{dx^n}f(x)\Biggr|_{x=0} = n!\cdot a_n

Thus, we have:

g ( n ) = ( 1 ) n + 1 ( 1 + 1 2 + 1 3 + 1 n ) g(n) = (-1)^{n+1}\bigg(1 + \frac{1}{2} + \frac{1}{3} + \dots \frac{1}{n}\bigg)

Now, note that for k N k\in\mathbb{N} , the following holds:

g ( 2 k ) + g ( 2 k + 1 ) = ( 1 + 1 2 + 1 2 k ) + ( 1 + 1 2 + 1 2 k + 1 ) = 1 2 k + 1 g(2k)+g(2k+1) = -\bigg(1+\frac{1}{2}+\dots\frac{1}{2k}\bigg) + \bigg(1+\frac{1}{2}+\dots\frac{1}{2k+1}\bigg)=\frac{1}{2k+1}

Finally,

k = 2 m 4 m + 1 g ( k ) = g ( 2 m ) + g ( 2 m + 1 ) + g ( 2 m + 2 ) + g ( 2 m + 3 ) + g ( 4 m ) + g ( 4 m + 1 ) \sum\limits_{k=2m}^{4m+1}g(k) = g(2m) + g(2m+1) + g(2m+2) + g(2m+3) + \dots g(4m) + g(4m+1)

= 1 2 m + 1 + 1 2 m + 3 + 1 4 m + 1 = \frac{1}{2m+1} + \frac{1}{2m+3} + \dots \frac{1}{4m+1}

= r = 0 m 1 2 ( m + r ) + 1 = \sum_{r=0}^{m}\frac{1}{2(m+r)+1}

lim m k = 2 m 4 m + 1 g ( k ) = lim m r = 0 m 1 2 ( m + r ) + 1 \therefore \lim\limits_{m \to \infty}\sum\limits_{k=2m}^{4m+1}g(k) = \lim\limits_{m \to \infty}\sum\limits_{r=0}^{m}\frac{1}{2(m+r)+1}

= lim m 1 m r = 0 m 1 2 + 2 r + 1 m =\lim\limits_{m \to \infty}\frac{1}{m}\sum\limits_{r=0}^{m}\dfrac{1}{2+\dfrac{2r+1}{m}}

If r + 1 2 m = x , then 1 m = d x \frac{r+\frac{1}{2}}{m}=x\text{, then }\frac{1}{m}=dx

lim m k = 2 m 4 m + 1 g ( k ) = 0 1 1 2 + 2 x d x \therefore \lim\limits_{m \to \infty}\sum\limits_{k=2m}^{4m+1}g(k) = \int\limits_{0}^{1}\frac{1}{2+2x}dx

= 1 2 log 2 \boxed{=\frac{1}{2}\log{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...