Derivative Magic I

Calculus Level 5

Define f ( x ) = k = 1 1001 x k + 1 k f(x)=\displaystyle\sum_{k=1}^{1001} \dfrac{x^{k+1}}{k} . If f ( 1001 ) ( 100 ) f^{(1001)} (100) can be evaluated as a × b ! a\times b! where b b is maximum, find a + b a+b .

Bonus: If f ( x ) = k = 1 n x k + 1 k f(x)=\displaystyle\sum_{k=1}^{n} \dfrac{x^{k+1}}{k} , find f ( n ) ( x ) f^{(n)} (x) .

Details and Assumptions:

  • f ( n ) ( x ) f^{(n)}(x) denotes the n t h n^{th} derivative of f ( x ) f(x) .
Try Part II .


The answer is 100202000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
Mar 29, 2016

f ( x ) = k = 1 n x k + 1 k f ( x ) = k = 1 n ( k + 1 ) x k k f ( x ) = k = 1 n ( k + 1 ) k x k 1 k f 3 ( x ) = k = 1 n ( k + 1 ) ( k 1 ) x k 2 f n ( x ) = k = 1 n ( k + 1 ) ( k 1 ) ( k ( n 2 ) ) x ( k ( n 1 ) ) \large{\begin{aligned}f(x)&=\displaystyle\sum_{k=1}^{n} \dfrac{x^{k+1}}{k}\\f'(x)&=\displaystyle\sum_{k=1}^{n} \dfrac{(k+1)x^{k}}{k}\\f''(x)&=\displaystyle\sum_{k=1}^{n} \dfrac{(k+1)\cancel{k}x^{k-1}}{\cancel{k}}\\f^3(x)&=\displaystyle\sum_{k=1}^{n}(k+1)( k-1)x^{k-2}\\&\cdots\\&\cdots\\ f^n~(x)&=\displaystyle\sum_{k=1}^{n}(k+1)(k-1)\cdots(k-(n-2))x^{(k-(n-1))}\end{aligned}}

Since first ( n 2 ) (n-2) terms of the summation will be zero we only have to calculate last two terms i.e:

= k = ( n 1 ) n ( ( k + 1 ) ( k 1 ) ( k ( n 2 ) ) x ( k ( n 1 ) ) =\displaystyle\sum_{k=(n-1)}^{n}((k+1)(k-1)\cdots(k-(n-2))x^{(k-(n-1))}

= n ( n 2 ) ! + x ( n + 1 ) ( n 1 ) ! = ( n 2 ) ! ( n + x ( n + 1 ) ( n 1 ) ) \large{ =n(n-2)!+x(n+1)(n-1)!\\=\boxed{(n-2)!(n+x(n+1)(n-1))}}

In the given question, n = 1000 , x = 100 n=1000, x=100 . Putting we get ( 999 ) ! × ( 100201001 ) (999)!\times (100201001) . Hence answer = 999 + 100201001 = 100202000 =999+100201001=\boxed{100202000} .

I didn't get it.Why will the 1st (n-2) terms be zero ?

Yuki Kuriyama - 5 years, 2 months ago

teree ma ka chdu

Ärìjít Sãmãñtå - 5 years, 2 months ago
Tom Van Lier
Mar 31, 2016

We know that by deriving 1001 times, only the terms x 1001 1000 \frac{x^{1001}}{1000} and x 1002 1001 \frac{x^{1002}}{1001} will survive (all the rest become constants and get a derivative of zero).

Now deriving them 1001 times, we get :

1001 ! 1000 + 1002 ! 1001 . 100 \frac{1001!}{1000} + \frac{1002!}{1001} . 100 , where the 100 comes from the evaluation at x = 100 x = 100 .

This simplifies to 999 ! . ( 1001 + 1002.100.1000 ) 999!.(1001 + 1002.100.1000) , which gives us 100202000.

Let us Apply Taylor's Theorem in the region of ( 100 , 100 + x ) (100 , 100+x) .
Let f ( x ) f(x) = k = 1 1001 x k + 1 k \sum_{k=1}^{1001} \frac{x^{k+1}}{k}

f ( 100 + x ) f(100+x) = f ( 100 ) f(100) + x f ( 100 ) 1 ! \frac{xf'(100)}{1!} + ( x 2 ) f ( 100 ) 2 ! \frac{(x^2)f''(100)}{2!} +...... Now we just need to evaluate the coefficient of x 1001 x^{1001} in the above expression which is 1001 + ( 1002 ) . 100000 ( 1000 ) ( 1001 ) \frac{1001+(1002).100000}{(1000)(1001)} . Now multiply it by 1001 ! 1001! to get ( 100201001 ) . ( 999 ! ) (100201001).(999!)

Subh Mandal
Mar 30, 2016

We know nth derivative of x^n = constant = n! So only last 2 term of series are useful and other are zero so We have- 1001 999!+1002 1000!*100 Solving we get 999!(100201001) Add them to get 100202000 And please specify in question that a,b are integers.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...