Derivative Magic II

Calculus Level 5

Define f ( x ) = k = 1 2016 x k + 1 k + 1 f(x)=\displaystyle\sum_{k=1}^{2016} \dfrac{x^{k+1}}{k+1} . If f ( 2016 ) ( 100 ) f^{(2016)} (100) can be evaluated as a × b ! a\times b! where b b is maximum, find a + b a+b .

Bonus: If f ( x ) = k = 1 n x k + 1 k + 1 f(x)=\displaystyle\sum_{k=1}^{n} \dfrac{x^{k+1}}{k+1} , find f ( n ) ( x ) f^{(n)} (x) .

Try Part I


The answer is 203616.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 28, 2016

f ( x ) = k = 1 n x k + 1 k + 1 f ( x ) = k = 1 n ( k + 1 ) x k k + 1 f 2 ( x ) = k = 1 n k x k 1 f 3 ( x ) = k = 1 n k ( k 1 ) x k 2 f n ( x ) = k = 1 n ( k ) ( k 1 ) ( k ( n 2 ) ) x ( k ( n 1 ) ) \large{\begin{aligned}f(x)&=\displaystyle\sum_{k=1}^{n} \dfrac{x^{k+1}}{k+1}\\f'(x)&=\displaystyle\sum_{k=1}^{n} \dfrac{\cancel{(k+1)}x^{k}}{\cancel{k+1}}\\f^2(x)&=\displaystyle\sum_{k=1}^{n} kx^{k-1}\\f^3(x)&=\displaystyle\sum_{k=1}^{n}k( k-1)x^{k-2}\\&\cdots\\&\cdots\\ f^n~(x)&=\displaystyle\sum_{k=1}^{n}(k)(k-1)\cdots(k-(n-2))x^{(k-(n-1))}\end{aligned}}

Since first ( n 2 ) (n-2) terms of the summation will be zero we only have to calculate last two terms i.e:

= k = ( n 1 ) n ( ( k ) ( k 1 ) ( k ( n 2 ) ) x ( k ( n 1 ) ) =\displaystyle\sum_{k=(n-1)}^{n}((k)(k-1)\cdots(k-(n-2))x^{(k-(n-1))}

= ( n 1 ) ! + x n ! = ( n 1 ) ! ( 1 + n x ) \large{ =(n-1)!+xn!\\=\boxed{(n-1)!(1+nx)}}


In the given question, n = 2016 , x = 100 n=2016, x=100 . Putting we get 2015 ! × ( 2016001 ) 2015!\times (2016001) . Hence answer = 2015 + 2016001 = 203616 =2015+2016001=\boxed{203616} .

Great solution ;) Please post solution Part 1 as well.

Nihar Mahajan - 5 years, 2 months ago

Log in to reply

Done... :-)

Rishabh Jain - 5 years, 2 months ago

Log in to reply

Thanks a ton!

Nihar Mahajan - 5 years, 2 months ago

Nice problems!

Post some more.

Dev Sharma - 5 years, 2 months ago

We know that f ( x ) = k = 1 2016 x k + 1 k + 1 = x 2 2 + x 3 3 + x 4 4 + . . . + x 2017 2017 f(x)=\sum_{k=1}^{2016}\frac{x^{k+1}}{k+1}=\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+...+\frac{x^{2017}}{2017} f 1 ( x ) = x + x 2 + x 3 + . . . + x 2016 \Rightarrow f^{1}(x)=x+x^{2}+x^{3}+...+x^{2016} f 2016 ( x ) = k = 1 2015 k + ( k = 1 2016 k ) x \Rightarrow f^{2016}(x)=\prod_{k=1}^{2015}k+(\prod_{k=1}^{2016}k)x Now, we get f 2016 ( 100 ) = k = 1 2015 k + ( k = 1 2016 k ) ( 100 ) f^{2016}(100)=\prod_{k=1}^{2015}k+(\prod_{k=1}^{2016}k)(100) = ( k = 1 2015 k ) × [ 1 + 2016 ( 100 ) ] =(\prod_{k=1}^{2015}k)\times[1+2016(100)] = ( k = 1 2015 k ) × 201601 =(\prod_{k=1}^{2015}k)\times201601 The answer is now in the desired form 2015 + 201601 = 203616 \therefore 2015+201601=\boxed{203616} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...