Derivatives

Calculus Level 3

Let f ( x ) = log x ( ln x ) f(x) = \log_x (\ln x) , then find f ( x ) f'(x) (the derivative of f ( x ) f(x) ) at x = e x = e . If this value can be expressed as e a e^a , submit your answer as the numerical value of a a .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Arthur Pdc
Aug 5, 2016

If f ( x ) = y f(x)=y : y = log x ( ln x ) x y = ln x ln ( x y ) = ln ( ln x ) y ln x = ln ( ln x ) y=\log_x(\ln~x)\\\\x^y=\ln x\\\\\ln(x^y)=\ln(\ln x)\\\\ y\cdot\ln x=\ln(\ln x)\\\\\\\\\\\\\\\\

Derivating the expression: y ln x + y 1 x = 1 ln x 1 x y ln x + log x ( ln x ) x = 1 x ln x y'\cdot\ln x+y\cdot\dfrac{1}{x}=\dfrac{1}{\ln x}\cdot\dfrac{1}{x}\\\\ y'\cdot\ln x+\dfrac{\log_x(\ln x)}{x}=\dfrac{1}{x\cdot\ln x}\\\\\\\\\\\\

At x = e x=e : y ln e + log e ( ln e ) e = 1 e ln e y 1 + log e ( 1 ) e = 1 e 1 y + 0 e = 1 e y = e 1 a = 1 y'\cdot\ln e+\dfrac{\log_e(\ln e)}{e}=\dfrac{1}{e\cdot\ln e}\\\\ y'\cdot1+\dfrac{\log_e(1)}{e}=\dfrac{1}{e\cdot1}\\\\ y'+\dfrac{0}{e}=\dfrac{1}{e}\\\\y'=e^{-1}\Longrightarrow\boxed{a=-1}

Natsir Muhammad
Jan 9, 2015

f(x) = log(x) (lnx)

use this

f(x) = log(a) x

then f'(x) = 1 / x ln a

now asume lnx as p

let f(x) = y

then dy / dx = dy/dp . dp/dx

dy/dx = (1 / p. lnx ) . 1 / x

dy/dx = 1/ lnx . lnx . x

now subt x = e

then we get dy/dx = 1/ lne. lne . e = 1/e

so dy/dx = 1 / e = e^-1

then a = -1

Chew-Seong Cheong
Aug 10, 2016

f ( x ) = log x ( ln x ) = ln ( ln x ) ln x By chain rule f ( x ) = 1 ln x 1 x 1 ln x 1 ln 2 x 1 x ln ( ln x ) = 1 x ln 2 x ln ( ln x ) x ln 2 x f ( e ) = 1 e ln 2 e ln ( ln e ) e ln 2 e = 1 e ( 1 2 ) ln 1 e ( 1 2 ) = 1 e = e 1 \begin{aligned} f(x) & = \log_x (\ln x) \\ & = \frac {\color{#3D99F6}{\ln (\ln x)}}{\color{#D61F06}{\ln x}} & \small \color{#3D99F6}{\text{By chain rule}} \\ f'(x) & = \color{#3D99F6}{\frac 1{\ln x} \cdot \frac 1x} \cdot \color{#D61F06}{\frac 1{\ln x} - \frac 1{\ln^2 x} \cdot \frac 1x} \cdot \color{#3D99F6}{\ln (\ln x)} \\ & = \frac 1{x\ln^2 x} - \frac {\ln (\ln x)}{x\ln^2 x} \\ \implies f'(e) & = \frac 1{e\ln^2 e} - \frac {\ln (\ln e)}{e\ln^2 e} \\ & = \frac 1{e(1^2)} - \frac {\ln 1}{e(1^2)} \\ & = \frac 1e = e^{-1} \end{aligned}

a = 1 \implies a = \boxed{-1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...